A low memory bandwidth Gaussian mixture model (GMM) processor for 20,000-word real-time speech recognition FPGA system

Kazuo Miura, Hiroki Noguchi, H. Kawaguchi, M. Yoshimoto
{"title":"A low memory bandwidth Gaussian mixture model (GMM) processor for 20,000-word real-time speech recognition FPGA system","authors":"Kazuo Miura, Hiroki Noguchi, H. Kawaguchi, M. Yoshimoto","doi":"10.1109/FPT.2008.4762413","DOIUrl":null,"url":null,"abstract":"We propose a GMM processor for large vocabulary real-time continuous speech recognition. This processor achieves low operating frequency and low memory bandwidth using parallelization and vector look-ahead schemes, which are suitable to FPGA implementation. We designed the proposed processor on a Celoxica RC250 FPGA board, and confirmed that the required frequency and memory bandwidth for real-time operation are reduced by 89.8% and 84.2%, respectively. The 20,000-word real-time GMM computation is made at a frequency of 30.4 MHz and memory bandwidth of 47 Mbps, on the prototype.","PeriodicalId":320925,"journal":{"name":"2008 International Conference on Field-Programmable Technology","volume":"6 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Field-Programmable Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2008.4762413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We propose a GMM processor for large vocabulary real-time continuous speech recognition. This processor achieves low operating frequency and low memory bandwidth using parallelization and vector look-ahead schemes, which are suitable to FPGA implementation. We designed the proposed processor on a Celoxica RC250 FPGA board, and confirmed that the required frequency and memory bandwidth for real-time operation are reduced by 89.8% and 84.2%, respectively. The 20,000-word real-time GMM computation is made at a frequency of 30.4 MHz and memory bandwidth of 47 Mbps, on the prototype.
用于2万字实时语音识别的低存储带宽高斯混合模型(GMM)处理器
提出了一种用于大词汇量实时连续语音识别的GMM处理器。该处理器采用并行化和矢量预查方案,实现了低工作频率和低存储带宽,适合FPGA实现。我们在Celoxica RC250 FPGA板上设计了所提出的处理器,并证实实时操作所需的频率和内存带宽分别降低了89.8%和84.2%。2万字的实时GMM计算在原型机上以30.4 MHz的频率和47mbps的内存带宽进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信