Dynamic Bird Detection Using Image Processing and Neural Network

Jeong-won Jo, Junwon Park, Jinyoung Han, Minsun Lee, Anthony H. Smith
{"title":"Dynamic Bird Detection Using Image Processing and Neural Network","authors":"Jeong-won Jo, Junwon Park, Jinyoung Han, Minsun Lee, Anthony H. Smith","doi":"10.1109/RITAPP.2019.8932891","DOIUrl":null,"url":null,"abstract":"Collisions of aircraft and birds cause serious flight accidents, and various studies are underway to find a solution to the problem. In recent image recognition studies, state-of-the-art deep learning technologies have been actively applied. This paper proposes image preprocessing and bird detection methods in all dynamic environments using Convolutional Neural Network (CNN) technology. Image preprocessing separates moving creatures from the dynamic background and removes the background. When image preprocessing is complete, the image of the moving object remaining in the frame is used as input data for the learning model to determine whether the bird is in the frame. We used the Inception -v3 neural network model to improve the accuracy of small object classifications.","PeriodicalId":234023,"journal":{"name":"2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA)","volume":"45 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RITAPP.2019.8932891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Collisions of aircraft and birds cause serious flight accidents, and various studies are underway to find a solution to the problem. In recent image recognition studies, state-of-the-art deep learning technologies have been actively applied. This paper proposes image preprocessing and bird detection methods in all dynamic environments using Convolutional Neural Network (CNN) technology. Image preprocessing separates moving creatures from the dynamic background and removes the background. When image preprocessing is complete, the image of the moving object remaining in the frame is used as input data for the learning model to determine whether the bird is in the frame. We used the Inception -v3 neural network model to improve the accuracy of small object classifications.
基于图像处理和神经网络的动态鸟类检测
飞机和鸟类的碰撞会导致严重的飞行事故,各种研究正在进行中,以找到解决这个问题的方法。在最近的图像识别研究中,最先进的深度学习技术被积极应用。本文利用卷积神经网络(CNN)技术提出了各种动态环境下的图像预处理和鸟类检测方法。图像预处理将移动的生物从动态背景中分离出来,并去除背景。当图像预处理完成后,将帧中剩余的运动物体图像作为学习模型的输入数据,以确定鸟是否在帧中。我们使用Inception -v3神经网络模型来提高小目标分类的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信