{"title":"Modelling and Simulation of AGVs Using Petri Nets","authors":"Tauseef Aized","doi":"10.19080/RAEJ.2018.03.555622","DOIUrl":null,"url":null,"abstract":"It is a technologically anticipated development that robotics in our age will become widespread and find common application areas in almost all sectors such as defense, transportation, health, service and manufacturing. This process is still expanding and the role of robots in everyday life as well as in industrial applications is increasing. One of the important applications of robotic systems in manufacturing environments is automated guided vehicles (AGVs). AGVs are autonomous systems controlled by a central control unit, operate autonomously without the need for an operator, and are used for transporting materials from one point to another [1-3]. An AGV reduces the number of occupational accidents that occur due to human beings because it fulfills all kinds of transportation operations without human interference in departments such as production, logistics, warehouse and distribution. These systems, which are used to transport all kinds of goods in industrial environments, are one of the most suitable systems to reduce costs and increase productivity. The AGVs can see the obstacles in their way due to the highest level of security measures used and sensors, slow down and stay at a safe distance. So, they can work safely in the same environment with people. Because of all these features and modularity, AGVs are frequently used in modern and flexible manufacturing systems today.","PeriodicalId":284212,"journal":{"name":"Robotics & Automation Engineering Journal","volume":"156 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics & Automation Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19080/RAEJ.2018.03.555622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
It is a technologically anticipated development that robotics in our age will become widespread and find common application areas in almost all sectors such as defense, transportation, health, service and manufacturing. This process is still expanding and the role of robots in everyday life as well as in industrial applications is increasing. One of the important applications of robotic systems in manufacturing environments is automated guided vehicles (AGVs). AGVs are autonomous systems controlled by a central control unit, operate autonomously without the need for an operator, and are used for transporting materials from one point to another [1-3]. An AGV reduces the number of occupational accidents that occur due to human beings because it fulfills all kinds of transportation operations without human interference in departments such as production, logistics, warehouse and distribution. These systems, which are used to transport all kinds of goods in industrial environments, are one of the most suitable systems to reduce costs and increase productivity. The AGVs can see the obstacles in their way due to the highest level of security measures used and sensors, slow down and stay at a safe distance. So, they can work safely in the same environment with people. Because of all these features and modularity, AGVs are frequently used in modern and flexible manufacturing systems today.