RRAM-based Analog In-Memory Computing : Invited Paper

Xiaoming Chen, Tao Song, Yinhe Han
{"title":"RRAM-based Analog In-Memory Computing : Invited Paper","authors":"Xiaoming Chen, Tao Song, Yinhe Han","doi":"10.1109/NANOARCH53687.2021.9642235","DOIUrl":null,"url":null,"abstract":"Despite resistive random-access memories (RRAMs) have the ability of analog in-memory computing and they can be utilized to accelerate some applications (e.g., neural networks), the analog-digital interface consumes considerable overhead and may even counteract the benefits brought by RRAM-based inmemory computing. In this paper, we introduce how to reduce or eliminate the overhead of the analog-digital interface in RRAM-based neural network accelerators and linear solver accelerators. In the former, we create an analog inference flow and introduce a new methodology to accelerate the entire analog flow by using resistive content-addressable memories (RCAMs). Redundant analog-to-digital conversions are eliminated. In the latter, we provide an approach to map classical iterative solvers onto RRAM-based crossbar arrays such that the hardware can get the solution in O(1) time complexity without actual iterations, and thus, intermediate analog-to-digital conversions and digital-to-analog conversions are completely eliminated. Simulation results have proven the superiorities in the performance and energy efficiency of our approaches. The accuracy problem of RRAM-based analog computing will be a future research focus.","PeriodicalId":424982,"journal":{"name":"2021 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOARCH53687.2021.9642235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Despite resistive random-access memories (RRAMs) have the ability of analog in-memory computing and they can be utilized to accelerate some applications (e.g., neural networks), the analog-digital interface consumes considerable overhead and may even counteract the benefits brought by RRAM-based inmemory computing. In this paper, we introduce how to reduce or eliminate the overhead of the analog-digital interface in RRAM-based neural network accelerators and linear solver accelerators. In the former, we create an analog inference flow and introduce a new methodology to accelerate the entire analog flow by using resistive content-addressable memories (RCAMs). Redundant analog-to-digital conversions are eliminated. In the latter, we provide an approach to map classical iterative solvers onto RRAM-based crossbar arrays such that the hardware can get the solution in O(1) time complexity without actual iterations, and thus, intermediate analog-to-digital conversions and digital-to-analog conversions are completely eliminated. Simulation results have proven the superiorities in the performance and energy efficiency of our approaches. The accuracy problem of RRAM-based analog computing will be a future research focus.
基于随机存储器的模拟内存计算:特邀论文
尽管电阻随机存取存储器(rram)具有模拟内存计算的能力,并且可以用来加速某些应用程序(例如,神经网络),但模拟-数字接口消耗相当大的开销,甚至可能抵消基于rram的内存计算带来的好处。本文介绍了如何减少或消除基于ram的神经网络加速器和线性求解器加速器中模拟-数字接口的开销。在前者中,我们创建了一个模拟推理流,并引入了一种新的方法,通过使用电阻性内容可寻址存储器(RCAMs)来加速整个模拟流。消除了冗余的模数转换。在后者中,我们提供了一种将经典迭代求解器映射到基于rram的交叉棒阵列的方法,使得硬件可以在0(1)时间复杂度内获得解决方案,而无需实际迭代,从而完全消除了中间的模数转换和数模转换。仿真结果证明了该方法在性能和能效方面的优势。基于随机存储器的模拟计算精度问题将是今后的研究热点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信