Comparative Study of Mooney Viscosity Prediction Models for Rubber Compounds based on ANFIS with Different Architectures

Palida Sapsiriroht, K. Kittipeerachon
{"title":"Comparative Study of Mooney Viscosity Prediction Models for Rubber Compounds based on ANFIS with Different Architectures","authors":"Palida Sapsiriroht, K. Kittipeerachon","doi":"10.1109/ICBIR52339.2021.9465865","DOIUrl":null,"url":null,"abstract":"Mooney viscosity is an important parameter in rubber compound industry because it is one of the processing windows and key properties of a rubber compound. As dynamic behaviors of rubber compounds are nonlinear and rubber product manufacturing process affects dynamic behaviors, an exact model for predicting Mooney viscosity has not been found. This paper presents the prediction models based on Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for rubber compounds with different architectures and the effects of changes of certain parameters in each model on prediction performance. The database is collected from the historical data of manufacturing and then cleansed by removing errors in process and out-of-spec values. Both premise and consequent parameters of rules are created using the parameter initialization algorithm. The effects of different numbers of inputs and epochs, different input variables, and different interpretation methods are investigated. The simulation results show that the minimum value of RMSE for data testing is obtained by using the parameters initialization algorithm with 100 epochs, 3 inputs and OR interpretation method. Moreover, the lower number of epochs indicates the faster processing of the model. It is expected that the Mooney viscosity can be predicted and shown immediately at the end of mixing process.","PeriodicalId":447560,"journal":{"name":"2021 6th International Conference on Business and Industrial Research (ICBIR)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th International Conference on Business and Industrial Research (ICBIR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBIR52339.2021.9465865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mooney viscosity is an important parameter in rubber compound industry because it is one of the processing windows and key properties of a rubber compound. As dynamic behaviors of rubber compounds are nonlinear and rubber product manufacturing process affects dynamic behaviors, an exact model for predicting Mooney viscosity has not been found. This paper presents the prediction models based on Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for rubber compounds with different architectures and the effects of changes of certain parameters in each model on prediction performance. The database is collected from the historical data of manufacturing and then cleansed by removing errors in process and out-of-spec values. Both premise and consequent parameters of rules are created using the parameter initialization algorithm. The effects of different numbers of inputs and epochs, different input variables, and different interpretation methods are investigated. The simulation results show that the minimum value of RMSE for data testing is obtained by using the parameters initialization algorithm with 100 epochs, 3 inputs and OR interpretation method. Moreover, the lower number of epochs indicates the faster processing of the model. It is expected that the Mooney viscosity can be predicted and shown immediately at the end of mixing process.
基于不同结构ANFIS的橡胶胶料Mooney粘度预测模型的比较研究
穆尼粘度是胶料的加工窗口之一,是胶料的关键性能,是胶料工业中的一个重要参数。由于橡胶化合物的动力学行为是非线性的,而橡胶制品的生产过程又会影响其动力学行为,目前还没有一个准确的预测穆尼粘度的模型。本文提出了基于自适应神经模糊推理系统(ANFIS)的不同结构橡胶化合物预测模型,以及各模型中某些参数的变化对预测性能的影响。数据库从制造的历史数据中收集,然后通过去除过程中的错误和不规范值来清理。使用参数初始化算法创建规则的前提参数和结果参数。研究了不同输入数量和时间、不同输入变量和不同解释方法的影响。仿真结果表明,采用100次、3次输入的参数初始化算法和OR解释方法获得了数据测试的最小RMSE值。此外,越少的epoch表示模型的处理速度越快。期望在混合过程结束时能够立即预测和显示穆尼粘度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信