S. Yamamichi, A. Horibe, T. Aoki, K. Hosokawa, T. Hisada, H. Mori
{"title":"Implementation challenges for scalable neuromorphic computing","authors":"S. Yamamichi, A. Horibe, T. Aoki, K. Hosokawa, T. Hisada, H. Mori","doi":"10.23919/VLSIC.2017.8008582","DOIUrl":null,"url":null,"abstract":"In the big data era, a new computing system, called Cognitive Computing, that can handle unstructured data, learn and extract the insights is required. A neuromorphic device is a key component for this, and several architectures are reported. Compared to the neuromorphic device with SRAM-based spiking neural network, a cross-bar structure device realizes on-chip leaning, but requires high-density off-chip interconnect, much higher than those for conventional high-end logic devices. Recent progress of solder bumping and 3-dimentional integration technologies are described.","PeriodicalId":333275,"journal":{"name":"2017 Symposium on VLSI Technology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIC.2017.8008582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the big data era, a new computing system, called Cognitive Computing, that can handle unstructured data, learn and extract the insights is required. A neuromorphic device is a key component for this, and several architectures are reported. Compared to the neuromorphic device with SRAM-based spiking neural network, a cross-bar structure device realizes on-chip leaning, but requires high-density off-chip interconnect, much higher than those for conventional high-end logic devices. Recent progress of solder bumping and 3-dimentional integration technologies are described.