How secure is split manufacturing in preventing hardware trojan?

Z. Chen, Pingqiang Zhou, Tsung-Yi Ho, Yier Jin
{"title":"How secure is split manufacturing in preventing hardware trojan?","authors":"Z. Chen, Pingqiang Zhou, Tsung-Yi Ho, Yier Jin","doi":"10.1145/3378163","DOIUrl":null,"url":null,"abstract":"With the trend of outsourcing fabrication, split manufacturing is regarded as a promising way to both provide the high-end nodes in untrusted external foundries and protect the design from potential attackers. However, in this work, we show that split manufacturing is not inherently secure. A hardware trojan attacker can still discover necessary information with a simulated annealing based attack approach at the placement level. We further propose a defense approach by moving the insecure gates away from their easily-attacked candidate locations. Experimental results on benchmark circuits show the effectiveness of our proposed methods.","PeriodicalId":394462,"journal":{"name":"2016 IEEE Asian Hardware-Oriented Security and Trust (AsianHOST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Asian Hardware-Oriented Security and Trust (AsianHOST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

With the trend of outsourcing fabrication, split manufacturing is regarded as a promising way to both provide the high-end nodes in untrusted external foundries and protect the design from potential attackers. However, in this work, we show that split manufacturing is not inherently secure. A hardware trojan attacker can still discover necessary information with a simulated annealing based attack approach at the placement level. We further propose a defense approach by moving the insecure gates away from their easily-attacked candidate locations. Experimental results on benchmark circuits show the effectiveness of our proposed methods.
分裂制造在防止硬件木马方面有多安全?
随着制造外包的趋势,分离制造被认为是一种很有前途的方法,既可以在不可信的外部代工厂中提供高端节点,又可以保护设计免受潜在攻击者的攻击。然而,在这项工作中,我们表明,分裂制造本身并不安全。硬件木马攻击者仍然可以在放置级别使用基于模拟退火的攻击方法发现必要的信息。我们进一步提出了一种防御方法,将不安全的门从容易被攻击的候选位置移开。在基准电路上的实验结果表明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信