{"title":"How secure is split manufacturing in preventing hardware trojan?","authors":"Z. Chen, Pingqiang Zhou, Tsung-Yi Ho, Yier Jin","doi":"10.1145/3378163","DOIUrl":null,"url":null,"abstract":"With the trend of outsourcing fabrication, split manufacturing is regarded as a promising way to both provide the high-end nodes in untrusted external foundries and protect the design from potential attackers. However, in this work, we show that split manufacturing is not inherently secure. A hardware trojan attacker can still discover necessary information with a simulated annealing based attack approach at the placement level. We further propose a defense approach by moving the insecure gates away from their easily-attacked candidate locations. Experimental results on benchmark circuits show the effectiveness of our proposed methods.","PeriodicalId":394462,"journal":{"name":"2016 IEEE Asian Hardware-Oriented Security and Trust (AsianHOST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Asian Hardware-Oriented Security and Trust (AsianHOST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
With the trend of outsourcing fabrication, split manufacturing is regarded as a promising way to both provide the high-end nodes in untrusted external foundries and protect the design from potential attackers. However, in this work, we show that split manufacturing is not inherently secure. A hardware trojan attacker can still discover necessary information with a simulated annealing based attack approach at the placement level. We further propose a defense approach by moving the insecure gates away from their easily-attacked candidate locations. Experimental results on benchmark circuits show the effectiveness of our proposed methods.