Shiliang Liu, G. Csaba, X. Hu, E. Varga, M. Niemier, G. Bernstein, W. Porod
{"title":"Minimum-energy state guided physical design for Nanomagnet Logic","authors":"Shiliang Liu, G. Csaba, X. Hu, E. Varga, M. Niemier, G. Bernstein, W. Porod","doi":"10.1145/2463209.2488865","DOIUrl":null,"url":null,"abstract":"Nanomagnet Logic (NML) accomplishes computation through magnetic dipole-dipole interactions. It has the potential for low-power dissipation, radiation hardness and non-volatility. NML circuits have been designed to process and move information via nearest neighbor, device-to-device coupling. However, the resultant layouts often fail to function correctly. This paper reveals an important cause of such failures showing that a robust NML layout must take into account not only nearest neighbor, but also the next nearest neighbor couplings. A new design method is then introduced to address this issue that leverages the minimum-energy states of an NML circuit to guide the layout process. Case studies show that the new method is efficient and effective in arriving at correct NML layouts.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Nanomagnet Logic (NML) accomplishes computation through magnetic dipole-dipole interactions. It has the potential for low-power dissipation, radiation hardness and non-volatility. NML circuits have been designed to process and move information via nearest neighbor, device-to-device coupling. However, the resultant layouts often fail to function correctly. This paper reveals an important cause of such failures showing that a robust NML layout must take into account not only nearest neighbor, but also the next nearest neighbor couplings. A new design method is then introduced to address this issue that leverages the minimum-energy states of an NML circuit to guide the layout process. Case studies show that the new method is efficient and effective in arriving at correct NML layouts.