Minimum-energy state guided physical design for Nanomagnet Logic

Shiliang Liu, G. Csaba, X. Hu, E. Varga, M. Niemier, G. Bernstein, W. Porod
{"title":"Minimum-energy state guided physical design for Nanomagnet Logic","authors":"Shiliang Liu, G. Csaba, X. Hu, E. Varga, M. Niemier, G. Bernstein, W. Porod","doi":"10.1145/2463209.2488865","DOIUrl":null,"url":null,"abstract":"Nanomagnet Logic (NML) accomplishes computation through magnetic dipole-dipole interactions. It has the potential for low-power dissipation, radiation hardness and non-volatility. NML circuits have been designed to process and move information via nearest neighbor, device-to-device coupling. However, the resultant layouts often fail to function correctly. This paper reveals an important cause of such failures showing that a robust NML layout must take into account not only nearest neighbor, but also the next nearest neighbor couplings. A new design method is then introduced to address this issue that leverages the minimum-energy states of an NML circuit to guide the layout process. Case studies show that the new method is efficient and effective in arriving at correct NML layouts.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Nanomagnet Logic (NML) accomplishes computation through magnetic dipole-dipole interactions. It has the potential for low-power dissipation, radiation hardness and non-volatility. NML circuits have been designed to process and move information via nearest neighbor, device-to-device coupling. However, the resultant layouts often fail to function correctly. This paper reveals an important cause of such failures showing that a robust NML layout must take into account not only nearest neighbor, but also the next nearest neighbor couplings. A new design method is then introduced to address this issue that leverages the minimum-energy states of an NML circuit to guide the layout process. Case studies show that the new method is efficient and effective in arriving at correct NML layouts.
纳米磁体逻辑的最小能量状态引导物理设计
纳米磁体逻辑(NML)通过磁偶极子-偶极子相互作用来完成计算。它具有低功耗,辐射硬度和无挥发性的潜力。NML电路被设计成通过最近邻、设备到设备耦合来处理和移动信息。然而,最终的布局往往不能正确地发挥作用。本文揭示了这种失败的一个重要原因,表明鲁棒的NML布局不仅必须考虑最近邻,而且必须考虑下一个最近邻耦合。然后介绍了一种新的设计方法来解决这个问题,该方法利用NML电路的最小能量状态来指导布局过程。实例研究表明,该方法在得到正确的NML布局方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信