M. Barjaktarović, M. Faralli, M. Bertamini, L. Bruzzone
{"title":"A multispectral acquisition system for potential detection of Flavescence dorée","authors":"M. Barjaktarović, M. Faralli, M. Bertamini, L. Bruzzone","doi":"10.1109/TELFOR56187.2022.9983685","DOIUrl":null,"url":null,"abstract":"Agriculture is under constant pressure to increase the production rate and to provide more food or resources for other industries. Without precision agriculture it is not possible to fulfil these requirements. Medium and large-size farms already adopted this technology, but small farms are far from precision agriculture due to the high initial costs. In this paper we present a bespoke and affordable multispectral camera for precision farming and illustrate its application in the detection of Flavescence dorée. This is a grapevine disease that makes a great concern to grapevine producers in the whole Mediterranean region. Flavescence dorée is the only quarantine disease in the European region. The related mandatory control procedures include uprooting every infected plant, with the obligation to uproot the vineyard when the infection exceed the 20% of threshold infection, hence resulting in a high economical loss. Thus, it is highly important to detect even a single infected plant over an entire vineyard plot, preventing the spreading of Flavescence dorée at earliest stages. We used the in-house developed multispectral camera together with a hyperspectral camera to acquire data from two vineyards near Riva del Garda, Trentino, Italy, during the summer of 2022. These data are the starting point for selecting the optimal spectral bands for the detection of Flavescence dorée using affordable multispectral approaches and developing an appropriate classification algorithm.","PeriodicalId":277553,"journal":{"name":"2022 30th Telecommunications Forum (TELFOR)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Telecommunications Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR56187.2022.9983685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Agriculture is under constant pressure to increase the production rate and to provide more food or resources for other industries. Without precision agriculture it is not possible to fulfil these requirements. Medium and large-size farms already adopted this technology, but small farms are far from precision agriculture due to the high initial costs. In this paper we present a bespoke and affordable multispectral camera for precision farming and illustrate its application in the detection of Flavescence dorée. This is a grapevine disease that makes a great concern to grapevine producers in the whole Mediterranean region. Flavescence dorée is the only quarantine disease in the European region. The related mandatory control procedures include uprooting every infected plant, with the obligation to uproot the vineyard when the infection exceed the 20% of threshold infection, hence resulting in a high economical loss. Thus, it is highly important to detect even a single infected plant over an entire vineyard plot, preventing the spreading of Flavescence dorée at earliest stages. We used the in-house developed multispectral camera together with a hyperspectral camera to acquire data from two vineyards near Riva del Garda, Trentino, Italy, during the summer of 2022. These data are the starting point for selecting the optimal spectral bands for the detection of Flavescence dorée using affordable multispectral approaches and developing an appropriate classification algorithm.
农业面临着不断提高生产率和为其他工业提供更多粮食或资源的压力。没有精准农业,就不可能满足这些要求。中型和大型农场已经采用了这项技术,但由于初始成本高,小型农场离精准农业还很远。本文介绍了一种定制的、价格合理的用于精准农业的多光谱相机,并举例说明了它在黄斑变性检测中的应用。这是一种葡萄病害,引起了整个地中海地区葡萄生产者的极大关注。黄萎病是欧洲地区唯一的检疫性疾病。相关的强制性控制程序包括将每一株被感染的植株连根拔起,当感染超过20%的感染阈值时,有义务将葡萄园连根拔起,从而造成很高的经济损失。因此,即使是在整个葡萄园地块上发现一株受感染的植株,也非常重要,这可以在早期阶段防止黄变病的蔓延。在2022年夏天,我们使用了内部开发的多光谱相机和高光谱相机,在意大利Trentino Riva del Garda附近的两个葡萄园获取数据。这些数据是选择最优光谱波段进行多光谱检测和开发合适的分类算法的起点。