Parameter Reduction for Variability Analysis by Slice Inverse Regression (SIR) Method

A. Mitev, M. Marefat, D. Ma, Janet Roveda
{"title":"Parameter Reduction for Variability Analysis by Slice Inverse Regression (SIR) Method","authors":"A. Mitev, M. Marefat, D. Ma, Janet Roveda","doi":"10.1049/iet-cds:20070185","DOIUrl":null,"url":null,"abstract":"With semiconductor fabrication technologies scaled below 100 nm, the design-manufacturing interface becomes more and more complicated. The resultant process variability causes a number of issues in the new generation IC design. One of the biggest challenges is the enormous number of process variation related parameters. These parameters represent numerous local and global variations, and pose a heavy burden in today's chip verification and design. This paper proposes a new way of reducing the statistical variations (which include both process parameters and design variables) according to their impacts on the overall circuit performance. The new approach creates an effective reduction subspace (ERS) and provides a transformation matrix by using the mean and variance of the response surface. With the generated transformation matrix, the proposed method maps the original statistical variations to a smaller set of variables with which we process variability analysis. Thus, the computational cost due to the number of variations is greatly reduced. Experimental results show that by using new method we can achieve 20% to 50% parameter reduction with only less than 8% error on average.","PeriodicalId":362373,"journal":{"name":"2007 Asia and South Pacific Design Automation Conference","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Asia and South Pacific Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-cds:20070185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

With semiconductor fabrication technologies scaled below 100 nm, the design-manufacturing interface becomes more and more complicated. The resultant process variability causes a number of issues in the new generation IC design. One of the biggest challenges is the enormous number of process variation related parameters. These parameters represent numerous local and global variations, and pose a heavy burden in today's chip verification and design. This paper proposes a new way of reducing the statistical variations (which include both process parameters and design variables) according to their impacts on the overall circuit performance. The new approach creates an effective reduction subspace (ERS) and provides a transformation matrix by using the mean and variance of the response surface. With the generated transformation matrix, the proposed method maps the original statistical variations to a smaller set of variables with which we process variability analysis. Thus, the computational cost due to the number of variations is greatly reduced. Experimental results show that by using new method we can achieve 20% to 50% parameter reduction with only less than 8% error on average.
基于切片逆回归(SIR)方法的参数约简变异性分析
随着半导体制造技术规模缩小到100nm以下,设计制造界面变得越来越复杂。由此产生的工艺变异性在新一代集成电路设计中引起了许多问题。最大的挑战之一是大量的工艺变化相关参数。这些参数代表了许多局部和全局的变化,并且在当今的芯片验证和设计中构成了沉重的负担。本文提出了一种根据统计变化(包括工艺参数和设计变量)对电路整体性能的影响来减少统计变化的新方法。该方法利用响应面的均值和方差,建立了有效的约简子空间,并给出了变换矩阵。该方法利用生成的变换矩阵,将原始的统计变化映射到一个较小的变量集,并利用该变量集进行变异性分析。因此,由于变化的数量,计算成本大大减少。实验结果表明,采用新方法可以在平均误差小于8%的情况下实现20% ~ 50%的参数缩减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信