Discontinuous Galerkin immerse finite volume element method for elliptic interface problems

Zhongyan Liu, Huanzhen Chen
{"title":"Discontinuous Galerkin immerse finite volume element method for elliptic interface problems","authors":"Zhongyan Liu, Huanzhen Chen","doi":"10.1109/ICIST.2014.6920344","DOIUrl":null,"url":null,"abstract":"By choosing the trial function space to the immersed finite element space and the test function space to be piecewise constant function space, we develop a discontinuous Galerkin immersed finite volume element method to solve the elliptic interface problems. The existence and uniqueness of the discrete scheme is proved, and an optimal energy-norm error estimate and L2-norm estimate for the numerical solution are obtained.","PeriodicalId":306383,"journal":{"name":"2014 4th IEEE International Conference on Information Science and Technology","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 4th IEEE International Conference on Information Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2014.6920344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

By choosing the trial function space to the immersed finite element space and the test function space to be piecewise constant function space, we develop a discontinuous Galerkin immersed finite volume element method to solve the elliptic interface problems. The existence and uniqueness of the discrete scheme is proved, and an optimal energy-norm error estimate and L2-norm estimate for the numerical solution are obtained.
椭圆界面问题的不连续Galerkin浸入有限体积元法
将试验函数空间选择为浸入式有限元空间,将试验函数空间选择为分段常数函数空间,提出了求解椭圆界面问题的不连续Galerkin浸入式有限体积元方法。证明了离散格式的存在唯一性,得到了数值解的最优能量范数误差估计和l2范数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信