Artificial Perturbation Method for Nonlinear Dynamical Systems and its Computational Applications

A. Krumov
{"title":"Artificial Perturbation Method for Nonlinear Dynamical Systems and its Computational Applications","authors":"A. Krumov","doi":"10.1109/ICCCYB.2006.305715","DOIUrl":null,"url":null,"abstract":"In the paper a perturbation method and robust approximation model of nonlinear dynamical systems, using sequence of time-invariant linear systems are applied. The sufficient conditions for robust application of the perturbation method and the validity of the approximation are proven with a theorem, applying the theory of nonlinear operators of the functional analysis. Three examples comparing the numerical solution of the original system and the analytical solution of the approximate robust model are given. The method can be applied for analysis of dynamical systems, complex systems, optimization, synthesis of computer control and for investigation of classical perturbation problems.","PeriodicalId":160588,"journal":{"name":"2006 IEEE International Conference on Computational Cybernetics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Computational Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCYB.2006.305715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the paper a perturbation method and robust approximation model of nonlinear dynamical systems, using sequence of time-invariant linear systems are applied. The sufficient conditions for robust application of the perturbation method and the validity of the approximation are proven with a theorem, applying the theory of nonlinear operators of the functional analysis. Three examples comparing the numerical solution of the original system and the analytical solution of the approximate robust model are given. The method can be applied for analysis of dynamical systems, complex systems, optimization, synthesis of computer control and for investigation of classical perturbation problems.
非线性动力系统的人工摄动法及其计算应用
本文采用摄动法和鲁棒逼近模型求解定常线性系统的非线性动力系统。应用泛函分析的非线性算子理论,用一个定理证明了摄动方法鲁棒应用的充分条件和逼近的有效性。给出了原系统的数值解与近似鲁棒模型的解析解的三个算例对比。该方法可用于动力系统、复杂系统的分析、优化、计算机控制的综合和经典摄动问题的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信