A new type of boundary value coupling for second order Sturm-Liouville systems

John E. Geist
{"title":"A new type of boundary value coupling for second order Sturm-Liouville systems","authors":"John E. Geist","doi":"10.6028/jres.075b.006","DOIUrl":null,"url":null,"abstract":"A natural genera lization of the familiar second order Sturm-Liouville syste m is presented. T his gene rali za tion co ns is ts of considering a number of differe ntia l equ ations defined on difTerent inte rvals, instead of ju st one equation on one inte rva l. The self-adjoint characte r of the diffe rential equations is re ta ined in th e gene rali za tion, but th e boundary conditions a re re laxed conside ra bl y. The mos t gene ral boundary cond itions which can be accommod ated by thi s so rt of gene ralization of S turm-Liouvi ll e theory a re di scussed. Th e exis te nce of e igenva lues is proved , and a gene ra lized orthogonalit y and a weak e igenfun ction expansion theorem are de rived.","PeriodicalId":166823,"journal":{"name":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1971-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/jres.075b.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A natural genera lization of the familiar second order Sturm-Liouville syste m is presented. T his gene rali za tion co ns is ts of considering a number of differe ntia l equ ations defined on difTerent inte rvals, instead of ju st one equation on one inte rva l. The self-adjoint characte r of the diffe rential equations is re ta ined in th e gene rali za tion, but th e boundary conditions a re re laxed conside ra bl y. The mos t gene ral boundary cond itions which can be accommod ated by thi s so rt of gene ralization of S turm-Liouvi ll e theory a re di scussed. Th e exis te nce of e igenva lues is proved , and a gene ra lized orthogonalit y and a weak e igenfun ction expansion theorem are de rived.
一类新的二阶Sturm-Liouville系统边值耦合
给出了熟悉的二阶Sturm-Liouville系统m的自然推广。T他的基因rali咱公司决心ns的ts的考虑均ntia l装备的现代化道路上定义difTerent强度rvals,而不是当作自己人一个方程在一个强度rva l。产生实用的成立与自伴的r方程再保险ta独立董事在th e基因rali咱,但再保险再保险th e边界条件宽松,标本ra提单y。mos T基因、边界条件数过渡可以accommod给出通过thi s rt基因ralization s turm-Liouvi ll e理论条件。证明了遗传值的存在性,给出了一个基因化正交定理和一个弱遗传函数展开定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信