Classification and estimation of ultrasound speckle noise with neural networks

M. Wachowiak, Adel Said Elmaghraby, Renata Wachowiak-Smolíkova, J. Zurada
{"title":"Classification and estimation of ultrasound speckle noise with neural networks","authors":"M. Wachowiak, Adel Said Elmaghraby, Renata Wachowiak-Smolíkova, J. Zurada","doi":"10.1109/BIBE.2000.889614","DOIUrl":null,"url":null,"abstract":"Presents a neural-based approach to classifying and estimating the statistical parameters of speckle noise found in biomedical ultrasound images. Speckle noise, a very complex phenomenon, has been modeled in a variety of different ways: and there is currently no clear consensus as to its precise statistical characteristics. In this study, different neural network architectures are used to classify ultrasound images contaminated with three types of noise, based upon three one-parameter statistical distributions. At the same time: the parameter is estimated. It is expected that accurate characterization of ultrasound speckle noise will benefit existing post-processing methods, and may lead to new refinements in these techniques.","PeriodicalId":196846,"journal":{"name":"Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering","volume":"47 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2000.889614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Presents a neural-based approach to classifying and estimating the statistical parameters of speckle noise found in biomedical ultrasound images. Speckle noise, a very complex phenomenon, has been modeled in a variety of different ways: and there is currently no clear consensus as to its precise statistical characteristics. In this study, different neural network architectures are used to classify ultrasound images contaminated with three types of noise, based upon three one-parameter statistical distributions. At the same time: the parameter is estimated. It is expected that accurate characterization of ultrasound speckle noise will benefit existing post-processing methods, and may lead to new refinements in these techniques.
超声散斑噪声的神经网络分类与估计
提出了一种基于神经网络的生物医学超声图像中散斑噪声统计参数的分类和估计方法。散斑噪声是一种非常复杂的现象,人们已经用各种不同的方法对其进行了建模,目前对其精确的统计特征还没有明确的共识。在本研究中,基于三种单参数统计分布,使用不同的神经网络架构对三种噪声污染的超声图像进行分类。同时:对参数进行估计。预计超声散斑噪声的准确表征将有利于现有的后处理方法,并可能导致这些技术的新改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信