A Fast Approach for the Structural Design of Frame-Like Fbar Based on 2d Plate Theory

Nian Li, Bin Wang, Z. Qian
{"title":"A Fast Approach for the Structural Design of Frame-Like Fbar Based on 2d Plate Theory","authors":"Nian Li, Bin Wang, Z. Qian","doi":"10.1109/SPAWDA48812.2019.9019305","DOIUrl":null,"url":null,"abstract":"In recent years, film bulk acoustic wave resonators (FBARs) have been successfully utilized in almost every wireless system due to their good performance. To optimize the working performance of FBAR, frame-like structure was previously proposed to suppress the resonances of so-called spurious modes. Another aspect that has impact on the working performance of FBAR is the undesired coupling modes, which were rarely studied due to the lack of proper theoretical tools. In this paper, a fast approach for the structural design of frame-like FBARs is proposed with the use of two-dimensional plate theory. The widely used state-vector approach is applied here and both free and forced vibration results are obtained. The structure size of frame-like FBAR is determined through the analysis of frequency spectra and the results are compared with those obtained with 3D FEM software to ensure the accuracy of our proposed method. Mode shapes and admittance response curves show the suppression ability of spurious modes and the undesired coupling modes in the designed frame-like structure. Results in this paper show that the presented method can work as an effective tool in engineering design process.","PeriodicalId":208819,"journal":{"name":"2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA)","volume":"61 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWDA48812.2019.9019305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, film bulk acoustic wave resonators (FBARs) have been successfully utilized in almost every wireless system due to their good performance. To optimize the working performance of FBAR, frame-like structure was previously proposed to suppress the resonances of so-called spurious modes. Another aspect that has impact on the working performance of FBAR is the undesired coupling modes, which were rarely studied due to the lack of proper theoretical tools. In this paper, a fast approach for the structural design of frame-like FBARs is proposed with the use of two-dimensional plate theory. The widely used state-vector approach is applied here and both free and forced vibration results are obtained. The structure size of frame-like FBAR is determined through the analysis of frequency spectra and the results are compared with those obtained with 3D FEM software to ensure the accuracy of our proposed method. Mode shapes and admittance response curves show the suppression ability of spurious modes and the undesired coupling modes in the designed frame-like structure. Results in this paper show that the presented method can work as an effective tool in engineering design process.
基于二维板理论的框架型钢筋结构快速设计方法
近年来,薄膜体声波谐振器(fbar)由于其良好的性能,已成功地应用于几乎所有的无线系统中。为了优化FBAR的工作性能,之前提出了类似框架的结构来抑制所谓的伪模共振。影响FBAR工作性能的另一个方面是不期望的耦合模式,由于缺乏适当的理论工具,很少对其进行研究。本文提出了一种基于二维板理论的框架式fbar结构快速设计方法。本文采用了常用的状态向量方法,得到了自由振动和强迫振动的结果。通过频谱分析确定了框架式FBAR的结构尺寸,并与三维有限元软件的结果进行了比较,以保证本文方法的准确性。模态振型和导纳响应曲线显示了所设计的类框架结构对杂散模态和非期望耦合模态的抑制能力。结果表明,该方法可以作为工程设计过程中的一种有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信