Multi keyword range search in GPU and MIC: A comparison study

A. Abdullah, Kek kok Yong, E. Karuppiah, P. K. Chong
{"title":"Multi keyword range search in GPU and MIC: A comparison study","authors":"A. Abdullah, Kek kok Yong, E. Karuppiah, P. K. Chong","doi":"10.1109/ICOS.2014.7042640","DOIUrl":null,"url":null,"abstract":"Data, both structured and unstructured, is increasing exponentially daily. This valuable data is important to businesses, society, and other organisations in order to compute more accurate analysis, and eventually, make better judgement. In order to handle huge data, many have turned to co-processors like GPUs or Intel MIC to further accelerate their computation. In this study, we present performance and evaluation comparison of GPU and MIC by implementing Multi Text Keyword Search algorithms from our prior work into MIC and GPU. We use NVIDIA K20c and NVIDIA K40 for our GPUs and Intel® Xeon Phi™ 5100 for the MIC. In our experiments and from our observation we found out K20c and K40 outperformed MIC for this particular algorithm.","PeriodicalId":146332,"journal":{"name":"2014 IEEE Conference on Open Systems (ICOS)","volume":"144 1-3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Open Systems (ICOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOS.2014.7042640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Data, both structured and unstructured, is increasing exponentially daily. This valuable data is important to businesses, society, and other organisations in order to compute more accurate analysis, and eventually, make better judgement. In order to handle huge data, many have turned to co-processors like GPUs or Intel MIC to further accelerate their computation. In this study, we present performance and evaluation comparison of GPU and MIC by implementing Multi Text Keyword Search algorithms from our prior work into MIC and GPU. We use NVIDIA K20c and NVIDIA K40 for our GPUs and Intel® Xeon Phi™ 5100 for the MIC. In our experiments and from our observation we found out K20c and K40 outperformed MIC for this particular algorithm.
GPU和MIC中多关键字范围搜索的比较研究
数据,无论是结构化的还是非结构化的,每天都在呈指数级增长。这些有价值的数据对企业、社会和其他组织都很重要,可以进行更准确的分析,并最终做出更好的判断。为了处理大量数据,许多人转向gpu或英特尔MIC等协处理器来进一步加快计算速度。在本研究中,我们通过将我们之前工作中的多文本关键字搜索算法实现到MIC和GPU中,来展示GPU和MIC的性能和评估比较。我们的gpu使用NVIDIA K20c和NVIDIA K40, MIC使用Intel®Xeon Phi™5100。在我们的实验和观察中,我们发现K20c和K40在这个特定的算法中优于MIC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信