Medical Visual Textual Entailment for Numerical Understanding of Vision-and-Language Models

Hitomi Yanaka, Yuta Nakamura, Yuki Chida, Tomoya Kurosawa
{"title":"Medical Visual Textual Entailment for Numerical Understanding of Vision-and-Language Models","authors":"Hitomi Yanaka, Yuta Nakamura, Yuki Chida, Tomoya Kurosawa","doi":"10.18653/v1/2023.clinicalnlp-1.2","DOIUrl":null,"url":null,"abstract":"Assessing the capacity of numerical understanding of vision-and-language models over images and texts is crucial for real vision-and-language applications, such as systems for automated medical image analysis.We provide a visual reasoning dataset focusing on numerical understanding in the medical domain.The experiments using our dataset show that current vision-and-language models fail to perform numerical inference in the medical domain.However, the data augmentation with only a small amount of our dataset improves the model performance, while maintaining the performance in the general domain.","PeriodicalId":216954,"journal":{"name":"Clinical Natural Language Processing Workshop","volume":"28 24","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Natural Language Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.clinicalnlp-1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Assessing the capacity of numerical understanding of vision-and-language models over images and texts is crucial for real vision-and-language applications, such as systems for automated medical image analysis.We provide a visual reasoning dataset focusing on numerical understanding in the medical domain.The experiments using our dataset show that current vision-and-language models fail to perform numerical inference in the medical domain.However, the data augmentation with only a small amount of our dataset improves the model performance, while maintaining the performance in the general domain.
医学视觉文本蕴涵对视觉和语言模型的数值理解
评估对图像和文本的视觉和语言模型的数值理解能力对于真正的视觉和语言应用至关重要,例如自动医学图像分析系统。我们提供了一个视觉推理数据集,专注于医学领域的数值理解。使用我们的数据集进行的实验表明,目前的视觉和语言模型无法在医学领域进行数值推理。然而,仅使用少量数据集的数据增强提高了模型性能,同时保持了一般领域的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信