Hand detection and tracking using pixel value distribution model for multiple-camera-based gesture interactions

A. Utsumi, N. Tetsutani, S. Igi
{"title":"Hand detection and tracking using pixel value distribution model for multiple-camera-based gesture interactions","authors":"A. Utsumi, N. Tetsutani, S. Igi","doi":"10.1109/KMN.2002.1115159","DOIUrl":null,"url":null,"abstract":"We present a vision-based hand tracking system for gesture-based man-machine interactions and a statistical hand detection method. Our hand tracking system employs multiple cameras to reduce occlusion problems. Non-synchronous multiple observations enhance system scalability. In the system, users can manipulate a virtual scene by using predefined gesture commands. We propose a statistical method to detect hand regions in images using geometrical structures involved in the appearances of the target objects. Most conventional gesture recognition systems utilize a simpler method for hand detection such as background subtractions with assumed static observation conditions and those methods are not robust against camera motions, illumination changes, and so on. Our method can describe and recognize the appearances of hands based on geometrical structures. Experimental results show the effectiveness of our method.","PeriodicalId":215129,"journal":{"name":"Proceedings. IEEE Workshop on Knowledge Media Networking","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Workshop on Knowledge Media Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KMN.2002.1115159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

We present a vision-based hand tracking system for gesture-based man-machine interactions and a statistical hand detection method. Our hand tracking system employs multiple cameras to reduce occlusion problems. Non-synchronous multiple observations enhance system scalability. In the system, users can manipulate a virtual scene by using predefined gesture commands. We propose a statistical method to detect hand regions in images using geometrical structures involved in the appearances of the target objects. Most conventional gesture recognition systems utilize a simpler method for hand detection such as background subtractions with assumed static observation conditions and those methods are not robust against camera motions, illumination changes, and so on. Our method can describe and recognize the appearances of hands based on geometrical structures. Experimental results show the effectiveness of our method.
基于像素值分布模型的多摄像头手势交互手部检测与跟踪
我们提出了一种基于视觉的手部跟踪系统,用于基于手势的人机交互和统计手部检测方法。我们的手部跟踪系统采用多个摄像头来减少遮挡问题。非同步多重观测增强了系统的可扩展性。在系统中,用户可以通过使用预定义的手势命令来操纵虚拟场景。我们提出了一种统计方法来检测图像中的手部区域,使用涉及目标物体外观的几何结构。大多数传统的手势识别系统使用一种更简单的方法进行手部检测,例如假设静态观察条件下的背景减法,这些方法对相机运动、照明变化等不太健壮。我们的方法可以描述和识别基于几何结构的手的外观。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信