SCADAMAR: scalable and data-efficient internet MapReduce

CCB '14 Pub Date : 2014-12-08 DOI:10.1145/2676662.2676673
R. Bruno, P. Ferreira
{"title":"SCADAMAR: scalable and data-efficient internet MapReduce","authors":"R. Bruno, P. Ferreira","doi":"10.1145/2676662.2676673","DOIUrl":null,"url":null,"abstract":"Recent developments of popular programming models, namely MapReduce, have raised the interest of running MapReduce applications over the large scale Internet. However, current data distribution techniques used in Internet wide computing platforms to distribute the high volumes of information, which are needed to run MapReduce jobs, are naive, and therefore need to be re-thought.\n Thus, we present a computing platform called SCADAMAR that runs MapReduce jobs over the Internet and provides two new main contributions: i) improves data distribution by using the BitTorrent protocol to distribute all data, and ii) improves intermediate data availability by replicating tasks or data through nodes in order to avoid losing intermediate data and consequently preventing big delays on the MapReduce overall execution time.\n Along with the design of our solution, we present an extensive set of performance results which confirm the usefulness of the above mentioned contributions, improved data distribution and availability, thus making our platform a feasible approach to run MapReduce jobs.","PeriodicalId":185263,"journal":{"name":"CCB '14","volume":"32 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CCB '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2676662.2676673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Recent developments of popular programming models, namely MapReduce, have raised the interest of running MapReduce applications over the large scale Internet. However, current data distribution techniques used in Internet wide computing platforms to distribute the high volumes of information, which are needed to run MapReduce jobs, are naive, and therefore need to be re-thought. Thus, we present a computing platform called SCADAMAR that runs MapReduce jobs over the Internet and provides two new main contributions: i) improves data distribution by using the BitTorrent protocol to distribute all data, and ii) improves intermediate data availability by replicating tasks or data through nodes in order to avoid losing intermediate data and consequently preventing big delays on the MapReduce overall execution time. Along with the design of our solution, we present an extensive set of performance results which confirm the usefulness of the above mentioned contributions, improved data distribution and availability, thus making our platform a feasible approach to run MapReduce jobs.
SCADAMAR:可扩展和数据高效的互联网MapReduce
最近流行的编程模型的发展,即MapReduce,提高了在大规模互联网上运行MapReduce应用程序的兴趣。然而,目前在互联网计算平台上使用的用于分发运行MapReduce作业所需的大量信息的数据分发技术是幼稚的,因此需要重新考虑。因此,我们提出了一个名为SCADAMAR的计算平台,它在互联网上运行MapReduce作业,并提供了两个新的主要贡献:i)通过使用BitTorrent协议分发所有数据来改善数据分发,ii)通过节点复制任务或数据来提高中间数据的可用性,以避免丢失中间数据,从而防止MapReduce总体执行时间的大延迟。随着我们解决方案的设计,我们展示了一组广泛的性能结果,这些结果证实了上述贡献的有用性,改进了数据分布和可用性,从而使我们的平台成为运行MapReduce作业的可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信