{"title":"Dynamic partial order reduction for relaxed memory models","authors":"Naling Zhang, Markus Kusano, Chao Wang","doi":"10.1145/2737924.2737956","DOIUrl":null,"url":null,"abstract":"Under a relaxed memory model such as TSO or PSO, a concurrent program running on a shared-memory multiprocessor may observe two types of nondeterminism: the nondeterminism in thread scheduling and the nondeterminism in store buffering. Although there is a large body of work on mitigating the scheduling nondeterminism during runtime verification, methods for soundly mitigating the store buffering nondeterminism are lacking. We propose a new dynamic partial order reduction (POR) algorithm for verifying concurrent programs under TSO and PSO. Our method relies on modeling both types of nondeterminism in a unified framework, which allows us to extend existing POR techniques to TSO and PSO without overhauling the verification algorithm. In addition to sound POR, we also propose a buffer-bounding method for more aggressively reducing the state space. We have implemented our new methods in a stateless model checking tool and demonstrated their effectiveness on a set of multithreaded C benchmarks.","PeriodicalId":104101,"journal":{"name":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"152 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2737924.2737956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75
Abstract
Under a relaxed memory model such as TSO or PSO, a concurrent program running on a shared-memory multiprocessor may observe two types of nondeterminism: the nondeterminism in thread scheduling and the nondeterminism in store buffering. Although there is a large body of work on mitigating the scheduling nondeterminism during runtime verification, methods for soundly mitigating the store buffering nondeterminism are lacking. We propose a new dynamic partial order reduction (POR) algorithm for verifying concurrent programs under TSO and PSO. Our method relies on modeling both types of nondeterminism in a unified framework, which allows us to extend existing POR techniques to TSO and PSO without overhauling the verification algorithm. In addition to sound POR, we also propose a buffer-bounding method for more aggressively reducing the state space. We have implemented our new methods in a stateless model checking tool and demonstrated their effectiveness on a set of multithreaded C benchmarks.