Cell-Aware Diagnosis of Customer Returns Using Bayesian Inference

S. Mhamdi, P. Girard, A. Virazel, A. Bosio, A. Ladhar
{"title":"Cell-Aware Diagnosis of Customer Returns Using Bayesian Inference","authors":"S. Mhamdi, P. Girard, A. Virazel, A. Bosio, A. Ladhar","doi":"10.1109/ISQED51717.2021.9424337","DOIUrl":null,"url":null,"abstract":"This paper presents a new cell-aware diagnosis flow that can be used to address a specific scenario (test protocol) one may encounter during diagnosis of customer returns. In this flow, we use a Bayesian classification method to precisely identify defect candidates. Experiments done on benchmark circuits as well as on a test chip from STMicroelectronics have proven the efficacy of our flow in terms of diagnosis accuracy and resolution.","PeriodicalId":123018,"journal":{"name":"2021 22nd International Symposium on Quality Electronic Design (ISQED)","volume":"75 50","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 22nd International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED51717.2021.9424337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new cell-aware diagnosis flow that can be used to address a specific scenario (test protocol) one may encounter during diagnosis of customer returns. In this flow, we use a Bayesian classification method to precisely identify defect candidates. Experiments done on benchmark circuits as well as on a test chip from STMicroelectronics have proven the efficacy of our flow in terms of diagnosis accuracy and resolution.
基于贝叶斯推理的细胞感知顾客退货诊断
本文提出了一种新的细胞感知诊断流程,可用于解决客户退货诊断过程中可能遇到的特定场景(测试协议)。在这个流程中,我们使用贝叶斯分类方法来精确地识别候选缺陷。在基准电路和意法半导体的测试芯片上进行的实验证明了我们的流程在诊断准确性和分辨率方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信