H. M. Zuhir, I. Saad, A. Roystone, A. M. Khairul, B. Ghosh, N. Bolong
{"title":"Enhancing efficiency of organic solar cells by interfacial materials modification","authors":"H. M. Zuhir, I. Saad, A. Roystone, A. M. Khairul, B. Ghosh, N. Bolong","doi":"10.1109/RSM.2017.8069154","DOIUrl":null,"url":null,"abstract":"This paper directed towards enhancing power conversion efficiency of organic photovoltaic by exploring emerging non-conjugated polymer material as an interfacial layers. The effect of non-conjugated polar polymers such as polymethyl methacrylate (PMMA), poly(4-vinylpyrirolidone) (PVPy) and poly(4-vinylalcohol) (PVA) as an interfacial layer (IFL) at the cathode side in improving the efficiency of poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester (P3HT:PCBM) OPV cell. The best power conversion efficiency (pCE) for OPVs with PVPy film currently is about 3.51% compared to the OPVs without the PVPy film which is about 2.88%. Efficiency enhancement of OPVs with PVA and PMMA film, PCE=3.27% and 3.39% respectively shows that the addition of those interfacial layers between the cathode interfaces had improve charge carrier mobility relative to the devices lacking those materials. This is reflected on the enhancement of open circuit voltage, short circuit current and fill factor value of these OPV device. The introduction of interfacial layer materials to OPV device also had reduce the work function of Al and enhanced short circuit current of OPV device. This eventually improves the reliability and efficiency rate of OPV for future building integrated photovoltaic application.","PeriodicalId":215909,"journal":{"name":"2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)","volume":"12 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSM.2017.8069154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper directed towards enhancing power conversion efficiency of organic photovoltaic by exploring emerging non-conjugated polymer material as an interfacial layers. The effect of non-conjugated polar polymers such as polymethyl methacrylate (PMMA), poly(4-vinylpyrirolidone) (PVPy) and poly(4-vinylalcohol) (PVA) as an interfacial layer (IFL) at the cathode side in improving the efficiency of poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester (P3HT:PCBM) OPV cell. The best power conversion efficiency (pCE) for OPVs with PVPy film currently is about 3.51% compared to the OPVs without the PVPy film which is about 2.88%. Efficiency enhancement of OPVs with PVA and PMMA film, PCE=3.27% and 3.39% respectively shows that the addition of those interfacial layers between the cathode interfaces had improve charge carrier mobility relative to the devices lacking those materials. This is reflected on the enhancement of open circuit voltage, short circuit current and fill factor value of these OPV device. The introduction of interfacial layer materials to OPV device also had reduce the work function of Al and enhanced short circuit current of OPV device. This eventually improves the reliability and efficiency rate of OPV for future building integrated photovoltaic application.