Support Vector Machine for Nonlinear System On-line Identification

Juan Angel Resendiz-Trejo, Wen Yu, Xiaoou Li
{"title":"Support Vector Machine for Nonlinear System On-line Identification","authors":"Juan Angel Resendiz-Trejo, Wen Yu, Xiaoou Li","doi":"10.1109/ICEEE.2006.251894","DOIUrl":null,"url":null,"abstract":"Neural networks is a very popular black-box identification tool. But it suffers some weaknesses for nonlinear on-line identification. For example, the learning process can only arrive local minima. The training algorithms are slow. Support vector machine (SVM) can overcome these problems. But the SVM needs all data to find optimal solution, it is not suitable for online identification. In this paper, we propose a new method to use SVM for on-line identification. We call it as recursive support vector machine (RSVM), where the kernel is not depended on all data, it is calculated by a recursive method, the SVM is also recursive. So we can realize on-line identification via SVM. Two examples are proposed to compare our RSVM with normal SVM","PeriodicalId":125310,"journal":{"name":"2006 3rd International Conference on Electrical and Electronics Engineering","volume":"30 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 3rd International Conference on Electrical and Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2006.251894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Neural networks is a very popular black-box identification tool. But it suffers some weaknesses for nonlinear on-line identification. For example, the learning process can only arrive local minima. The training algorithms are slow. Support vector machine (SVM) can overcome these problems. But the SVM needs all data to find optimal solution, it is not suitable for online identification. In this paper, we propose a new method to use SVM for on-line identification. We call it as recursive support vector machine (RSVM), where the kernel is not depended on all data, it is calculated by a recursive method, the SVM is also recursive. So we can realize on-line identification via SVM. Two examples are proposed to compare our RSVM with normal SVM
非线性系统在线辨识的支持向量机
神经网络是一种非常流行的黑盒识别工具。但在非线性在线辨识方面存在一些不足。例如,学习过程只能达到局部最小值。训练算法很慢。支持向量机(SVM)可以克服这些问题。但支持向量机需要所有数据才能找到最优解,不适合在线识别。本文提出了一种利用支持向量机进行在线识别的新方法。我们称之为递归支持向量机(RSVM),其中的核不依赖于所有的数据,它是用递归的方法计算的,支持向量机也是递归的。因此,我们可以利用支持向量机实现在线辨识。提出了两个例子来比较我们的RSVM和普通SVM
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信