{"title":"Optimization-based Wideband Basis Functions for Efficient Interconnect Extraction","authors":"Xin Hu, T. Moselhy, Jacob K. White, L. Daniel","doi":"10.1109/DATE.2007.364458","DOIUrl":null,"url":null,"abstract":"This paper introduces a technique for the numerical generation of basis functions that are capable of parameterizing the frequency-variant nature of cross-sectional conductor current distributions. Hence skin and proximity effects can be captured utilizing much fewer basis functions in comparison to the prevalently-used piecewise-constant basis functions. One important characteristic of these basis functions is that they only need to be pre-computed once for a frequency range of interest per unique conductor cross-sectional geometry, and they can be stored off-line with a minimal associated cost. In addition, the robustness of these frequency-independent basis functions is enforced using an optimization routine. It has been demonstrated that the cost of solving a complex interconnect system can be reduced by a factor of 170 when compared to the use of piecewise-constant basis functions over a wide range of operating frequencies","PeriodicalId":298961,"journal":{"name":"2007 Design, Automation & Test in Europe Conference & Exhibition","volume":"11 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Design, Automation & Test in Europe Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2007.364458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper introduces a technique for the numerical generation of basis functions that are capable of parameterizing the frequency-variant nature of cross-sectional conductor current distributions. Hence skin and proximity effects can be captured utilizing much fewer basis functions in comparison to the prevalently-used piecewise-constant basis functions. One important characteristic of these basis functions is that they only need to be pre-computed once for a frequency range of interest per unique conductor cross-sectional geometry, and they can be stored off-line with a minimal associated cost. In addition, the robustness of these frequency-independent basis functions is enforced using an optimization routine. It has been demonstrated that the cost of solving a complex interconnect system can be reduced by a factor of 170 when compared to the use of piecewise-constant basis functions over a wide range of operating frequencies