Road grades and tire forces estimation using two-stage extended Kalman filter in a delayed interconnected cascade structure

R. Cordeiro, A. M. Ribeiro, J. Azinheira, A. Victorino, Paulo A. V. Ferreira, E. Paiva, S. S. Bueno
{"title":"Road grades and tire forces estimation using two-stage extended Kalman filter in a delayed interconnected cascade structure","authors":"R. Cordeiro, A. M. Ribeiro, J. Azinheira, A. Victorino, Paulo A. V. Ferreira, E. Paiva, S. S. Bueno","doi":"10.1109/IVS.2017.7995707","DOIUrl":null,"url":null,"abstract":"Intelligent vehicles sense their dynamics and the environment to make proper decisions. Some of this information are hard to be measured or need expensive sensors. This paper addresses the estimation of road grade angles, along with tire-ground interaction forces, in a delayed interconnected cascade observer structure. A new approach using a Two-Stage Extended Kalman Filter is proposed, allowing a robust simultaneous estimation of the slow and fast dynamics variables. Experimental data is used to validate the estimator.","PeriodicalId":143367,"journal":{"name":"2017 IEEE Intelligent Vehicles Symposium (IV)","volume":"192 1‐2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2017.7995707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Intelligent vehicles sense their dynamics and the environment to make proper decisions. Some of this information are hard to be measured or need expensive sensors. This paper addresses the estimation of road grade angles, along with tire-ground interaction forces, in a delayed interconnected cascade observer structure. A new approach using a Two-Stage Extended Kalman Filter is proposed, allowing a robust simultaneous estimation of the slow and fast dynamics variables. Experimental data is used to validate the estimator.
在延迟互联级联结构中使用两阶段扩展卡尔曼滤波器估计道路等级和轮胎力
智能汽车可以感知它们的动态和环境,从而做出正确的决定。其中一些信息很难测量或需要昂贵的传感器。本文讨论了延迟互连级联观测器结构中道路坡度角以及轮胎-地面相互作用力的估计。提出了一种采用两阶段扩展卡尔曼滤波的新方法,可以同时对慢速和快速动态变量进行鲁棒估计。用实验数据验证了该估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信