SLAM for mobile robots using laser range finder and monocular vision

Sheng Fu, Hui-ying Liu, Lufang Gao, Yu-xian Gai
{"title":"SLAM for mobile robots using laser range finder and monocular vision","authors":"Sheng Fu, Hui-ying Liu, Lufang Gao, Yu-xian Gai","doi":"10.1109/MMVIP.2007.4430722","DOIUrl":null,"url":null,"abstract":"Localization and map building are two essential tasks for an autonomous mobile robot's indoor navigation without a prior map. This paper describes a mobile robot system designed for simultaneous localization and mapping (SLAM) for an autonomous mobile robot in an indoor environment. Due to variant sensor modeling for laser range finder and CCD camera, weighted least square fitting and Canny operator are used to extract certain two-dimensional environmental features and vertical edges respectively. Using Kalman filtering (KF) to localization and grid map building simultaneously are also presented. When implemented on a Zixing mobile robot produced by Harbin Institute of Technology (Weihai), the localization technique correctly localized the robot while exploring and mapping.","PeriodicalId":421396,"journal":{"name":"2007 14th International Conference on Mechatronics and Machine Vision in Practice","volume":"63 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 14th International Conference on Mechatronics and Machine Vision in Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMVIP.2007.4430722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

Localization and map building are two essential tasks for an autonomous mobile robot's indoor navigation without a prior map. This paper describes a mobile robot system designed for simultaneous localization and mapping (SLAM) for an autonomous mobile robot in an indoor environment. Due to variant sensor modeling for laser range finder and CCD camera, weighted least square fitting and Canny operator are used to extract certain two-dimensional environmental features and vertical edges respectively. Using Kalman filtering (KF) to localization and grid map building simultaneously are also presented. When implemented on a Zixing mobile robot produced by Harbin Institute of Technology (Weihai), the localization technique correctly localized the robot while exploring and mapping.
基于激光测距仪和单目视觉的移动机器人SLAM
定位和地图构建是自主移动机器人在没有事先地图的情况下进行室内导航的两项基本任务。本文介绍了一种用于室内环境下自主移动机器人同步定位与制图的移动机器人系统。由于激光测距仪和CCD相机的传感器建模不同,采用加权最小二乘拟合和Canny算子分别提取特定的二维环境特征和垂直边缘。提出了利用卡尔曼滤波(KF)同时进行定位和网格地图构建的方法。在哈尔滨工业大学(威海)生产的紫星移动机器人上实现了定位技术,该技术在探索和测绘时正确地定位了机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信