{"title":"Strain-Induced Change in the Photonic Properties of Dumbbell-Shaped Graphene Nanoribbon Structures","authors":"J. A. Goundar, Ken Suzuki, H. Miura","doi":"10.23919/ICEP55381.2022.9795457","DOIUrl":null,"url":null,"abstract":"The ribbon width dependency of graphene nanoribbons (GNR) on the electronic properties showed promising applications in the development of advanced photonic devices, such as multi-bandgap photovoltaic devices. However, large periodic oscillations due to the change in the number of carbon atoms is a major limitation. To effectively control the electronic band properties of the fabricated GNR-based device, in this study, application of strain to the GNR’s is proposed. This study experimentally validates the theoretical concept on an 80-nm ribbon width dumbbell-shaped-GNR structure. The device showed about clear change in the electronic properties under 3 different strain conditions with an observed gauge factor of about 1500. Under an irradiation of a focused laser beam, the device showed an improvement of about 4.5 times under applied strain when compared to an unstrained sample.","PeriodicalId":413776,"journal":{"name":"2022 International Conference on Electronics Packaging (ICEP)","volume":"124 14","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Electronics Packaging (ICEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICEP55381.2022.9795457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The ribbon width dependency of graphene nanoribbons (GNR) on the electronic properties showed promising applications in the development of advanced photonic devices, such as multi-bandgap photovoltaic devices. However, large periodic oscillations due to the change in the number of carbon atoms is a major limitation. To effectively control the electronic band properties of the fabricated GNR-based device, in this study, application of strain to the GNR’s is proposed. This study experimentally validates the theoretical concept on an 80-nm ribbon width dumbbell-shaped-GNR structure. The device showed about clear change in the electronic properties under 3 different strain conditions with an observed gauge factor of about 1500. Under an irradiation of a focused laser beam, the device showed an improvement of about 4.5 times under applied strain when compared to an unstrained sample.