N. Stojadinovic, I. Manic, S. Djoric-Veljkovic, V. Davidovic, D. Danković, S. Golubovic, S. Dimitrijev
{"title":"Spontaneous recovery of positive gate bias stressed power VDMOSFETs","authors":"N. Stojadinovic, I. Manic, S. Djoric-Veljkovic, V. Davidovic, D. Danković, S. Golubovic, S. Dimitrijev","doi":"10.1109/MIEL.2002.1003358","DOIUrl":null,"url":null,"abstract":"Spontaneous recovery of threshold voltage and channel carrier mobility in positive gate bias stressed power VDMOSFETs and the underlying changes in gate oxide-trapped charge and interface trap densities are presented and analysed. Electron tunneling from neutral oxide traps associated with trivalent silicon /spl equiv/Si/sub o//sup ./ defects into the oxide conduction band is proposed as the main mechanism responsible for stress-induced buildup of positive oxide-trapped charge. Subsequent hole tunneling from the charged oxide traps /spl equiv/Si/sub o//sup +/ to interface-trap precursors /spl equiv/Si/sub s/-H is proposed as the dominant mechanism responsible for the interface trap buildup. A chain of mechanisms related to a presence of hydrogen species is proposed in order to explain changes of oxide-trapped charge and interface trap densities during the spontaneous recovery. Interface trap /spl equiv/Si/sub s//sup ./ passivation due to their reaction with hydrogen atoms is proposed as a main mechanism responsible for a decrease of interface trap density. Hydrogen molecule cracking at charged oxide traps /spl equiv/Si/sub o//sup +/, which leads to their neutralization, is proposed as the dominant mechanism responsible for a decrease of oxide-trapped charge density.","PeriodicalId":221518,"journal":{"name":"2002 23rd International Conference on Microelectronics. Proceedings (Cat. No.02TH8595)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 23rd International Conference on Microelectronics. Proceedings (Cat. No.02TH8595)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIEL.2002.1003358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Spontaneous recovery of threshold voltage and channel carrier mobility in positive gate bias stressed power VDMOSFETs and the underlying changes in gate oxide-trapped charge and interface trap densities are presented and analysed. Electron tunneling from neutral oxide traps associated with trivalent silicon /spl equiv/Si/sub o//sup ./ defects into the oxide conduction band is proposed as the main mechanism responsible for stress-induced buildup of positive oxide-trapped charge. Subsequent hole tunneling from the charged oxide traps /spl equiv/Si/sub o//sup +/ to interface-trap precursors /spl equiv/Si/sub s/-H is proposed as the dominant mechanism responsible for the interface trap buildup. A chain of mechanisms related to a presence of hydrogen species is proposed in order to explain changes of oxide-trapped charge and interface trap densities during the spontaneous recovery. Interface trap /spl equiv/Si/sub s//sup ./ passivation due to their reaction with hydrogen atoms is proposed as a main mechanism responsible for a decrease of interface trap density. Hydrogen molecule cracking at charged oxide traps /spl equiv/Si/sub o//sup +/, which leads to their neutralization, is proposed as the dominant mechanism responsible for a decrease of oxide-trapped charge density.