Advances in air quality modeling and forecasting

Q1 Social Sciences
Alexander Baklanov , Yang Zhang
{"title":"Advances in air quality modeling and forecasting","authors":"Alexander Baklanov ,&nbsp;Yang Zhang","doi":"10.1016/j.glt.2020.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>The importance of and interest to research and investigations of atmospheric composition and its modeling for different applications are substantially increased. Air quality forecast (AQF) and assessment systems help decision makers to improve air quality and public health, mitigate the occurrence of acute air pollution episodes, particularly in urban areas, and reduce the associated impacts on agriculture, ecosystems and climate. Advanced approaches in AQF combine an ensemble of state-of-the-art models, high-resolution emission inventories, satellite observations, and surface measurements of most relevant chemical species to provide hindcasts, analyses, and forecasts from global to regional air pollution and downscaling for selected countries, regions, and urban areas. Based on published reviews and recent analyses, the article discusses main gaps, challenges, applications and advances, main trends and research needs in further advancements of atmospheric composition and air quality modeling and forecasting.</p></div>","PeriodicalId":33615,"journal":{"name":"Global Transitions","volume":"2 ","pages":"Pages 261-270"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.glt.2020.11.001","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Transitions","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589791820300232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 43

Abstract

The importance of and interest to research and investigations of atmospheric composition and its modeling for different applications are substantially increased. Air quality forecast (AQF) and assessment systems help decision makers to improve air quality and public health, mitigate the occurrence of acute air pollution episodes, particularly in urban areas, and reduce the associated impacts on agriculture, ecosystems and climate. Advanced approaches in AQF combine an ensemble of state-of-the-art models, high-resolution emission inventories, satellite observations, and surface measurements of most relevant chemical species to provide hindcasts, analyses, and forecasts from global to regional air pollution and downscaling for selected countries, regions, and urban areas. Based on published reviews and recent analyses, the article discusses main gaps, challenges, applications and advances, main trends and research needs in further advancements of atmospheric composition and air quality modeling and forecasting.

空气质量模型和预报的研究进展
研究和调查大气成分及其模拟在不同应用中的重要性和兴趣大大增加。空气质量预报和评估系统有助于决策者改善空气质量和公共卫生,减轻急性空气污染事件的发生,特别是在城市地区,并减少对农业、生态系统和气候的相关影响。AQF的先进方法结合了最先进的模型、高分辨率排放清单、卫星观测和大多数相关化学物质的地面测量,提供从全球到区域空气污染的预测、分析和预测,并为选定的国家、地区和城市地区缩小规模。本文根据已发表的综述和最近的分析,讨论了大气成分和空气质量建模与预报的主要差距、挑战、应用和进展、主要趋势和进一步发展的研究需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Transitions
Global Transitions Social Sciences-Development
CiteScore
18.90
自引率
0.00%
发文量
1
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信