{"title":"Simultaneous weighted sums of elements of finitely generated multiplicative groups","authors":"R. Tijdeman , Lianxiang Wang","doi":"10.1016/S1385-7258(88)80028-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>{G<sub>j</sub>}<sub>jεJ</sub></em> be a finite set of finitely generated subgroups of the multiplicative group of complex numbers <em>C</em><sup>x</sup>. Write <em>H=∩ <sub>jεJ</sub> G<sub>j</sub></em>. Let <em>n</em> be a positive integer and <em>a<sub>ij</sub></em> a complex number for <em>i</em> = 1, ..., <em>n</em> and <em>j ε J</em>. Then there exists a set <em>W</em> with the following properties. The cardinality of <em>W</em> depends only on <em>{G<sub>j</sub>}<sub>jεJ</sub></em> and <em>n</em>. If, for each <em>jεJ, α</em> has a representation <em>α = Σ <sub>i</sub><sup>n</sup> = <sub>1</sub>a <sub>ij</sub>g<sub>ij</sub></em> in elements <em>g<sub>ij</sub></em> of <em>G<sub>j</sub></em>, then α has a representation <em>a= Σ<sub>k=1</sub><sup>n</sup> w<sub>k</sub>h<sub>k</sub></em> with <em>w<sub>k</sub>εW, h<sub>k</sub> εH</em> for <em>k = 1,..., n</em>. The theorem in this note gives information on such representations.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"91 2","pages":"Pages 205-209"},"PeriodicalIF":0.0000,"publicationDate":"1988-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(88)80028-3","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725888800283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let {Gj}jεJ be a finite set of finitely generated subgroups of the multiplicative group of complex numbers Cx. Write H=∩ jεJ Gj. Let n be a positive integer and aij a complex number for i = 1, ..., n and j ε J. Then there exists a set W with the following properties. The cardinality of W depends only on {Gj}jεJ and n. If, for each jεJ, α has a representation α = Σ in = 1a ijgij in elements gij of Gj, then α has a representation a= Σk=1n wkhk with wkεW, hk εH for k = 1,..., n. The theorem in this note gives information on such representations.