A memory-efficient computer procedure to estimate the fractal dimension of trabecular bone

Mark Pearson, Gabriel Landini
{"title":"A memory-efficient computer procedure to estimate the fractal dimension of trabecular bone","authors":"Mark Pearson,&nbsp;Gabriel Landini","doi":"10.1002/1361-6374(199706)5:2<58::AID-BIO2>3.0.CO;2-9","DOIUrl":null,"url":null,"abstract":"<p>The fractal dimension is a measure of the space filling characteristics of a particular object. In this paper we describe a method to quantify the fractal dimension (D) of three-dimensionally reconstructed samples from serial sections based on the two-dimensional mass–radius relation of the object embedded in the sections. The advantage of performing the analysis in this way is that it requires little computer memory to hold the data in comparison to the procedure that calculates the mass–radius dimension from the three-dimensional data array. In this case, the test datum is a human first lumbar vertebra embedded in black resin, then horizontally sectioned 256 times and each section photographed using a digital imaging system. The captured images were converted to binary images and then analysed using the 2-D and 3-D mass–radius relation to determine the fractal dimension (D) of the trabecular bone. D was 3.01 using the cubic structuring element and 2.92 using the spherical structuring element. The method may be used to quantify in an objective manner the complex structure of trabecular bone, to model and design new materials (bone substitutes), to understand the physical properties of bone and model the patterns of radiographic images.</p>","PeriodicalId":100176,"journal":{"name":"Bioimaging","volume":"5 2","pages":"58-64"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/1361-6374(199706)5:2<58::AID-BIO2>3.0.CO;2-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimaging","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/1361-6374%28199706%295%3A2%3C58%3A%3AAID-BIO2%3E3.0.CO%3B2-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The fractal dimension is a measure of the space filling characteristics of a particular object. In this paper we describe a method to quantify the fractal dimension (D) of three-dimensionally reconstructed samples from serial sections based on the two-dimensional mass–radius relation of the object embedded in the sections. The advantage of performing the analysis in this way is that it requires little computer memory to hold the data in comparison to the procedure that calculates the mass–radius dimension from the three-dimensional data array. In this case, the test datum is a human first lumbar vertebra embedded in black resin, then horizontally sectioned 256 times and each section photographed using a digital imaging system. The captured images were converted to binary images and then analysed using the 2-D and 3-D mass–radius relation to determine the fractal dimension (D) of the trabecular bone. D was 3.01 using the cubic structuring element and 2.92 using the spherical structuring element. The method may be used to quantify in an objective manner the complex structure of trabecular bone, to model and design new materials (bone substitutes), to understand the physical properties of bone and model the patterns of radiographic images.

估计小梁分形维数的高效记忆计算机程序
分形维数是对特定物体的空间填充特性的度量。本文提出了一种基于嵌入物体的二维质量-半径关系来量化连续剖面三维重构样本分形维数的方法。以这种方式执行分析的优点是,与从三维数据数组计算质量半径维度的过程相比,它只需要很少的计算机内存来保存数据。在这种情况下,测试基准是一个人的第一个腰椎嵌入黑色树脂,然后水平切片256次,每个切片使用数字成像系统拍摄。将捕获的图像转换为二值图像,然后利用二维和三维质量半径关系进行分析,确定小梁骨的分形维数(D)。采用立方结构单元D为3.01,采用球面结构单元D为2.92。该方法可用于客观地量化骨小梁的复杂结构,建模和设计新材料(骨替代品),了解骨的物理特性和模拟放射图像的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信