Trace-free differential invariants of triples of vector 1-forms

Albert Nijenhuis
{"title":"Trace-free differential invariants of triples of vector 1-forms","authors":"Albert Nijenhuis","doi":"10.1016/S1385-7258(87)80040-9","DOIUrl":null,"url":null,"abstract":"<div><p>It is shown that the “trace-free” differential invariants of triples of vector 1-forms form a space of dimension 13. Twelve of these are accounted for by constructions based on the known bilinear “bracket” of vector 1-forms. We find one that is new, and exhibit it in various forms, including one that shows an unusual symmetry: it alternates in the three vector 1-forms and is a tensor of type (1,2), symmetric in its covariant part. Two-dimensional manifolds admit yet another new invariant.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 2","pages":"Pages 197-214"},"PeriodicalIF":0.0000,"publicationDate":"1987-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80040-9","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725887800409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

It is shown that the “trace-free” differential invariants of triples of vector 1-forms form a space of dimension 13. Twelve of these are accounted for by constructions based on the known bilinear “bracket” of vector 1-forms. We find one that is new, and exhibit it in various forms, including one that shows an unusual symmetry: it alternates in the three vector 1-forms and is a tensor of type (1,2), symmetric in its covariant part. Two-dimensional manifolds admit yet another new invariant.

向量1型三元组的无迹微分不变量
证明了向量1型三元组的“无迹”微分不变量构成了一个13维空间。其中12个是基于已知的双线性“括号”向量1形式的结构。我们发现了一个新的张量,并以不同的形式展示了它,包括一个不寻常的对称:它在三种向量1形式中交替出现,是一个(1,2)型张量,其协变部分是对称的。二维流形承认另一个新的不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信