{"title":"Trace-free differential invariants of triples of vector 1-forms","authors":"Albert Nijenhuis","doi":"10.1016/S1385-7258(87)80040-9","DOIUrl":null,"url":null,"abstract":"<div><p>It is shown that the “trace-free” differential invariants of triples of vector 1-forms form a space of dimension 13. Twelve of these are accounted for by constructions based on the known bilinear “bracket” of vector 1-forms. We find one that is new, and exhibit it in various forms, including one that shows an unusual symmetry: it alternates in the three vector 1-forms and is a tensor of type (1,2), symmetric in its covariant part. Two-dimensional manifolds admit yet another new invariant.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 2","pages":"Pages 197-214"},"PeriodicalIF":0.0000,"publicationDate":"1987-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80040-9","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725887800409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
It is shown that the “trace-free” differential invariants of triples of vector 1-forms form a space of dimension 13. Twelve of these are accounted for by constructions based on the known bilinear “bracket” of vector 1-forms. We find one that is new, and exhibit it in various forms, including one that shows an unusual symmetry: it alternates in the three vector 1-forms and is a tensor of type (1,2), symmetric in its covariant part. Two-dimensional manifolds admit yet another new invariant.