A naïve approach to speed up portfolio optimization problem using a multiobjective genetic algorithm

J. Samuel Baixauli-Soler , Eva Alfaro-Cid , Matilde O. Fernandez-Blanco
{"title":"A naïve approach to speed up portfolio optimization problem using a multiobjective genetic algorithm","authors":"J. Samuel Baixauli-Soler ,&nbsp;Eva Alfaro-Cid ,&nbsp;Matilde O. Fernandez-Blanco","doi":"10.1016/S1135-2523(12)70002-3","DOIUrl":null,"url":null,"abstract":"<div><p>Genetic algorithms (GAs) are appropriate when investors have the objective of obtaining mean-variance (VaR) efficient frontier as minimising VaR leads to non-convex and non-differential risk-return optimisation problems. However GAs are a time-consuming optimisation technique. In this paper, we propose to use a naïve approach consisting of using samples split by quartile of risk to obtain complete efficient frontiers in a reasonable computation time. Our results show that using reduced problems which only consider a quartile of the assets allow us to explore the efficient frontier for a large range of risk values. In particular, the third quartile allows us to obtain efficient frontiers from the 1.8% to 2.5% level of VaR quickly, while that of the first quartile of assets is from 1% to 1.3% level of VaR.</p></div>","PeriodicalId":30125,"journal":{"name":"Investigaciones Europeas de Direccion y Economia de la Empresa","volume":"18 2","pages":"Pages 126-131"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1135-2523(12)70002-3","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigaciones Europeas de Direccion y Economia de la Empresa","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1135252312700023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Genetic algorithms (GAs) are appropriate when investors have the objective of obtaining mean-variance (VaR) efficient frontier as minimising VaR leads to non-convex and non-differential risk-return optimisation problems. However GAs are a time-consuming optimisation technique. In this paper, we propose to use a naïve approach consisting of using samples split by quartile of risk to obtain complete efficient frontiers in a reasonable computation time. Our results show that using reduced problems which only consider a quartile of the assets allow us to explore the efficient frontier for a large range of risk values. In particular, the third quartile allows us to obtain efficient frontiers from the 1.8% to 2.5% level of VaR quickly, while that of the first quartile of assets is from 1% to 1.3% level of VaR.

利用多目标遗传算法加速投资组合优化问题的naïve方法
当投资者的目标是获得平均方差(VaR)有效边界时,遗传算法(GAs)是合适的,因为最小化VaR会导致非凸和非微分风险-收益优化问题。然而,GAs是一种耗时的优化技术。在本文中,我们建议使用naïve方法,包括使用按风险四分位数划分的样本,以在合理的计算时间内获得完整的有效边界。我们的结果表明,使用仅考虑四分之一资产的简化问题使我们能够探索大范围风险值的有效边界。特别是,第三个四分位数使我们能够快速从1.8%到2.5%的VaR水平获得有效边界,而第一个四分位数的资产从1%到1.3%的VaR水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信