Viet Huong Nguyen*, Abderrahime Sekkat, César Arturo Masse de la Huerta, Fadi Zoubian, Chiara Crivello, Juan Rubio-Zuazo, Moustapha Jaffal, Marceline Bonvalot, Christophe Vallée, Olivier Aubry, Hervé Rabat, Dunpin Hong, David Muñoz-Rojas*
{"title":"Atmospheric Plasma-Enhanced Spatial Chemical Vapor Deposition of SiO2 Using Trivinylmethoxysilane and Oxygen Plasma","authors":"Viet Huong Nguyen*, Abderrahime Sekkat, César Arturo Masse de la Huerta, Fadi Zoubian, Chiara Crivello, Juan Rubio-Zuazo, Moustapha Jaffal, Marceline Bonvalot, Christophe Vallée, Olivier Aubry, Hervé Rabat, Dunpin Hong, David Muñoz-Rojas*","doi":"10.1021/acs.chemmater.0c01148","DOIUrl":null,"url":null,"abstract":"<p >SiO<sub>2</sub> constitutes one of the most widely used dielectric materials in the microelectronics, packaging, and optical industries. Therefore, the development of new processes to deposit SiO<sub>2</sub> at low temperature and in an affordable and scalable way are desirable. In this work, we present a low-temperature, open-air process based on spatial atomic layer deposition (SALD) that yields high purity SiO<sub>2</sub> films at temperatures down to room temperature. The films were obtained by operating our SALD system in CVD mode (i.e., allowing precursor crosstalk), using an oxygen plasma in combination with trivinylmethoxysilane (TVMS). TVMS is an appealing precursor since it is highly volatile, is affordable, and does not contain halogen elements, thus being very suitable for application in atmospheric-pressure spatial deposition systems. Conversely, water, oxygen, hydrogen peroxide, or ozone did not show any reactivity with TVMS at temperatures up to 260 °C. Thus, when operating our system in ALD mode, no film could be obtained due to the lack of reactivity of the precursor with OH* surface groups. 3D printing was employed to fabricate custom heads integrating both the precursor injector and the atmospheric plasma generator. Our results show that conformal SiO<sub>2</sub> thin films can be deposited by our atmospheric plasma-enhanced spatial chemical vapor deposition (APE-SCVD) approach at low temperatures (RT–180 °C) on different substrates, including silicon wafers, microglass slides, or even polymeric substrates with a high growth rate up to 2–5 nm/min. The deposition rate increased when increasing the power applied to the plasma reactor but decreased when increasing the deposition temperature due to the faster decay of the metastable oxygen radical species. FTIR results showed no differences for films deposited with different plasma powers. Conversely, temperature had an effect on the ratio between the AS<sub>1</sub> and the AS<sub>2</sub> bands. Even though the deposition of SiO<sub>2</sub> was carried out at low temperatures in the open air using a metalorganic precursor, no contamination from SiN<sub><i>x</i></sub> or SiC<sub><i>x</i></sub> was observed by FTIR and XPS measurements. Our results open the door to the low-temperature, fast printing of Si-based devices.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"32 12","pages":"5153–5161"},"PeriodicalIF":7.2000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acs.chemmater.0c01148","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.0c01148","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 15
Abstract
SiO2 constitutes one of the most widely used dielectric materials in the microelectronics, packaging, and optical industries. Therefore, the development of new processes to deposit SiO2 at low temperature and in an affordable and scalable way are desirable. In this work, we present a low-temperature, open-air process based on spatial atomic layer deposition (SALD) that yields high purity SiO2 films at temperatures down to room temperature. The films were obtained by operating our SALD system in CVD mode (i.e., allowing precursor crosstalk), using an oxygen plasma in combination with trivinylmethoxysilane (TVMS). TVMS is an appealing precursor since it is highly volatile, is affordable, and does not contain halogen elements, thus being very suitable for application in atmospheric-pressure spatial deposition systems. Conversely, water, oxygen, hydrogen peroxide, or ozone did not show any reactivity with TVMS at temperatures up to 260 °C. Thus, when operating our system in ALD mode, no film could be obtained due to the lack of reactivity of the precursor with OH* surface groups. 3D printing was employed to fabricate custom heads integrating both the precursor injector and the atmospheric plasma generator. Our results show that conformal SiO2 thin films can be deposited by our atmospheric plasma-enhanced spatial chemical vapor deposition (APE-SCVD) approach at low temperatures (RT–180 °C) on different substrates, including silicon wafers, microglass slides, or even polymeric substrates with a high growth rate up to 2–5 nm/min. The deposition rate increased when increasing the power applied to the plasma reactor but decreased when increasing the deposition temperature due to the faster decay of the metastable oxygen radical species. FTIR results showed no differences for films deposited with different plasma powers. Conversely, temperature had an effect on the ratio between the AS1 and the AS2 bands. Even though the deposition of SiO2 was carried out at low temperatures in the open air using a metalorganic precursor, no contamination from SiNx or SiCx was observed by FTIR and XPS measurements. Our results open the door to the low-temperature, fast printing of Si-based devices.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.