Baohua Liu , Chengyu He , Yang Li , Zhengtong Li , Weiming Wang , Zhongwei Lu , Zengqiang Wang , Shijie Zhao , Gang Liu , Xianghu Gao
{"title":"Quasi-metallic high-entropy spinel oxides for full-spectrum solar energy harvesting","authors":"Baohua Liu , Chengyu He , Yang Li , Zhengtong Li , Weiming Wang , Zhongwei Lu , Zengqiang Wang , Shijie Zhao , Gang Liu , Xianghu Gao","doi":"10.1016/j.matt.2023.10.020","DOIUrl":null,"url":null,"abstract":"<div><p>Broadband absorbers, capable of efficiently capturing solar energy across the full spectrum, are highly desired for solar-thermal applications. Here, we developed such an absorber by marriage of a high-entropy strategy and the prevailing spinel oxides. A high-entropy spinel oxide (CoCrFeMnNi)<sub>3</sub>O<sub>4</sub><span> is synthesized by a facile sol-gel combustion approach. This high-entropy engineering narrows the band gap of the spinel oxide from 2.65 eV to 0 eV, showing a quasi-metallic characteristic. Notably, it reaches the lower limit for band gaps (0 eV) of spinel oxides, which has not been realized previously to the best of our knowledge. As a result, it leads to an impressive solar absorptance of 95.5% across the entire solar spectrum. As a proof of concept, we experimentally demonstrate its appealing potential in solar water evaporation, achieving an excellent evaporation efficiency of 96.5%. Our findings provide an avenue for the development of high-performance solar absorbers for high-efficiency solar-thermal conversion systems.</span></p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 1","pages":"Pages 140-157"},"PeriodicalIF":17.3000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238523005210","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Broadband absorbers, capable of efficiently capturing solar energy across the full spectrum, are highly desired for solar-thermal applications. Here, we developed such an absorber by marriage of a high-entropy strategy and the prevailing spinel oxides. A high-entropy spinel oxide (CoCrFeMnNi)3O4 is synthesized by a facile sol-gel combustion approach. This high-entropy engineering narrows the band gap of the spinel oxide from 2.65 eV to 0 eV, showing a quasi-metallic characteristic. Notably, it reaches the lower limit for band gaps (0 eV) of spinel oxides, which has not been realized previously to the best of our knowledge. As a result, it leads to an impressive solar absorptance of 95.5% across the entire solar spectrum. As a proof of concept, we experimentally demonstrate its appealing potential in solar water evaporation, achieving an excellent evaporation efficiency of 96.5%. Our findings provide an avenue for the development of high-performance solar absorbers for high-efficiency solar-thermal conversion systems.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.