A modular approach to Andrews-Beck partition statistics

IF 0.9 2区 数学 Q2 MATHEMATICS
Renrong Mao
{"title":"A modular approach to Andrews-Beck partition statistics","authors":"Renrong Mao","doi":"10.1016/j.jcta.2023.105832","DOIUrl":null,"url":null,"abstract":"<div><p>Andrews recently provided a <em>q</em>-series proof of congruences for <span><math><mi>N</mi><mi>T</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span>, the total number of parts in the partitions of <em>n</em> with rank congruent to <em>m</em><span> modulo </span><em>k</em>. Motivated by Andrews' works, Chern obtain congruences for <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> which denotes the total number of ones in the partition of <em>n</em> with crank congruent to <em>m</em> modulo <em>k</em><span>. In this paper, we focus on the modular approach to these new partition statistics. Applying the theory of mock modular forms, we establish equalities and identities for </span><span><math><mi>N</mi><mi>T</mi><mo>(</mo><mi>m</mi><mo>,</mo><mn>7</mn><mo>,</mo><mi>n</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>,</mo><mn>7</mn><mo>,</mo><mi>n</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"203 ","pages":"Article 105832"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316523001000","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Andrews recently provided a q-series proof of congruences for NT(m,k,n), the total number of parts in the partitions of n with rank congruent to m modulo k. Motivated by Andrews' works, Chern obtain congruences for Mω(m,k,n) which denotes the total number of ones in the partition of n with crank congruent to m modulo k. In this paper, we focus on the modular approach to these new partition statistics. Applying the theory of mock modular forms, we establish equalities and identities for NT(m,7,n) and Mω(m,7,n).

Andrews-Beck分区统计的模块化方法
Andrews最近给出了n的分区中秩与m模k相等的部分的总数NT(m,k,n)的同余的q级数证明。在Andrews的工作的启发下,Chern得到了m ω(m,k,n)的同余,表示n的分区中曲量与m模k相等的部分的总数。在本文中,我们重点讨论了这些新的分区统计量的模方法。应用拟模形式理论,建立了NT(m,7,n)和m ω(m,7,n)的等式和恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信