High energy efficiency nanodielectrics with relaxor ferroelectric polymer and antiferroelectric (Pb0.97La0.02) (Zr0.63Sn0.3Ti0.07)O3 ceramics

IF 3.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jian Wang, Yunchuan Xie, Chao Chen, Biyun Peng, Ben Zhang, Zhicheng Zhang
{"title":"High energy efficiency nanodielectrics with relaxor ferroelectric polymer and antiferroelectric (Pb0.97La0.02) (Zr0.63Sn0.3Ti0.07)O3 ceramics","authors":"Jian Wang,&nbsp;Yunchuan Xie,&nbsp;Chao Chen,&nbsp;Biyun Peng,&nbsp;Ben Zhang,&nbsp;Zhicheng Zhang","doi":"10.1049/nde2.12013","DOIUrl":null,"url":null,"abstract":"<p>Dielectric materials with high-energy-density and low-energy-loss have received lot of attention in terms of renewable energy storage and application. PVDF-based polymer/ceramics composite dielectrics are considered as one of the most promising materials due to their high dielectric constant. However, the high remnant polarisation (<i>P</i><sub><i>r</i></sub>) of ferroelectric polymer matrix and ceramics fillers generates a lot of energy loss and residual heat during charge-discharge cycles, which limits their practical applications. Compared with ferroelectrics, relaxor ferroelectric and antiferroelectric dielectrics may have high energy efficiency due to their lower <i>P</i><sub><i>r</i></sub>. Here, the relaxor ferroelectric matrix and antiferroelectric filler coated by the polydopamine layer were prepared by chemical grafting and solid-state method, respectively. Afterwards, the P(VDF-TrFE-CTFE)-g-PMMA/PLZST nanocomposite was prepared via solution casting. Experimental results show that the energy loss of the optimised nanocomposites was significantly reduced, leading to an enhanced charge-discharge efficiency (<i>η</i>) of 78% at 450 MV/m, which is 267% of the pure P(VDF-TrFE-CTFE) matrix and superior to those of most polymer/ferroelectric filler nanocomposites. It is encouraging that the breakdown strength and energy storage density of the P(VDF-TrFE-CTFE)-g-PMMA/PLZST nanocomposites with 6 wt% filler fractions reach the values of 458 MV/m and 10.3 J/cm<sup>3</sup>. This study establishes a simple and effective strategy for preparing capacitors with high energy efficiency.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"4 4","pages":"171-178"},"PeriodicalIF":3.8000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12013","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5

Abstract

Dielectric materials with high-energy-density and low-energy-loss have received lot of attention in terms of renewable energy storage and application. PVDF-based polymer/ceramics composite dielectrics are considered as one of the most promising materials due to their high dielectric constant. However, the high remnant polarisation (Pr) of ferroelectric polymer matrix and ceramics fillers generates a lot of energy loss and residual heat during charge-discharge cycles, which limits their practical applications. Compared with ferroelectrics, relaxor ferroelectric and antiferroelectric dielectrics may have high energy efficiency due to their lower Pr. Here, the relaxor ferroelectric matrix and antiferroelectric filler coated by the polydopamine layer were prepared by chemical grafting and solid-state method, respectively. Afterwards, the P(VDF-TrFE-CTFE)-g-PMMA/PLZST nanocomposite was prepared via solution casting. Experimental results show that the energy loss of the optimised nanocomposites was significantly reduced, leading to an enhanced charge-discharge efficiency (η) of 78% at 450 MV/m, which is 267% of the pure P(VDF-TrFE-CTFE) matrix and superior to those of most polymer/ferroelectric filler nanocomposites. It is encouraging that the breakdown strength and energy storage density of the P(VDF-TrFE-CTFE)-g-PMMA/PLZST nanocomposites with 6 wt% filler fractions reach the values of 458 MV/m and 10.3 J/cm3. This study establishes a simple and effective strategy for preparing capacitors with high energy efficiency.

Abstract Image

具有弛豫铁电聚合物和反铁电(Pb0.97La0.02) (Zr0.63Sn0.3Ti0.07)O3陶瓷的高能效纳米介电材料
高能量密度、低能量损耗的介电材料在可再生能源存储和应用方面受到广泛关注。pvdf基聚合物/陶瓷复合介质由于具有较高的介电常数而被认为是最有前途的材料之一。然而,铁电聚合物基体和陶瓷填料的高残余极化(Pr)在充放电循环过程中会产生大量的能量损失和余热,限制了它们的实际应用。与铁电体相比,弛豫铁电体和反铁电体由于其较低的Pr而具有较高的能量效率。本文分别采用化学接枝和固态法制备了弛豫铁电基体和包覆聚多巴胺层的反铁电填料。然后,通过溶液铸造法制备了P(VDF-TrFE-CTFE)-g-PMMA/PLZST纳米复合材料。实验结果表明,优化后的纳米复合材料的能量损失显著降低,在450 MV/m时充放电效率(η)提高了78%,是纯P(VDF-TrFE-CTFE)基体的267%,优于大多数聚合物/铁电填充纳米复合材料。填充率为6 wt%的P(VDF-TrFE-CTFE)-g-PMMA/PLZST纳米复合材料的击穿强度和储能密度分别达到458 MV/m和10.3 J/cm3。本研究建立了一种简单有效的高能效电容器制备策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Nanodielectrics
IET Nanodielectrics Materials Science-Materials Chemistry
CiteScore
5.60
自引率
3.70%
发文量
7
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信