Quasi-invariance of modulus and quasisymmetry of weakly (L,M)-quasisymmetric maps in metric spaces

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2023-11-12 DOI:10.1112/mtk.12233
Tao Cheng, Shanshuang Yang
{"title":"Quasi-invariance of modulus and quasisymmetry of weakly (L,M)-quasisymmetric maps in metric spaces","authors":"Tao Cheng,&nbsp;Shanshuang Yang","doi":"10.1112/mtk.12233","DOIUrl":null,"url":null,"abstract":"<p>This paper contributes to the study of a fundamental problem in the theory of quasiconformal analysis: under what conditions local quasiconformality of a homeomorphism implies its global quasisymmetry. We show that in general metric spaces local regularity and some connectivity together with the Loewner condition are necessary and sufficient for a quasiconformal map to be globally quasisymmetric with respect to the internal metrics. In this endeavor, two major new ingredients are used. One is the recently introduced concept of weakly <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>L</mi>\n <mo>,</mo>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(L,M)$</annotation>\n </semantics></math>-quasisymmetry, serving as a bridge between local quasiconformality and global quasisymmetry. Another is the quasi-invariance of conformal modulus under weakly <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>L</mi>\n <mo>,</mo>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(L,M)$</annotation>\n </semantics></math>-quasisymmetric maps, which is developed in this paper.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12233","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper contributes to the study of a fundamental problem in the theory of quasiconformal analysis: under what conditions local quasiconformality of a homeomorphism implies its global quasisymmetry. We show that in general metric spaces local regularity and some connectivity together with the Loewner condition are necessary and sufficient for a quasiconformal map to be globally quasisymmetric with respect to the internal metrics. In this endeavor, two major new ingredients are used. One is the recently introduced concept of weakly ( L , M ) $(L,M)$ -quasisymmetry, serving as a bridge between local quasiconformality and global quasisymmetry. Another is the quasi-invariance of conformal modulus under weakly ( L , M ) $(L,M)$ -quasisymmetric maps, which is developed in this paper.

度量空间中弱(L,M)-拟对称映射的模的拟不变性和拟对称性
本文研究了拟共形分析理论中的一个基本问题:在什么条件下同胚的局部拟共形暗示其整体拟对称。我们证明了在一般度量空间中,局部正则性和某些连通性以及Loewner条件是拟共形映射相对于内度量全局拟对称的充分必要条件。在这一努力中,使用了两种主要的新成分。一个是最近引入的弱(L,M)$ (L,M)$ -拟对称的概念,它是局部拟共形和全局拟对称之间的桥梁。另一个是弱(L,M)$ (L,M)$ -拟对称映射下保形模的拟不变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信