Viviane Fátima de Oliveira, Lucas Figueiredo, Gabriel de Oliveira Correia, Maria de Fátima Pires da Silva Machado, Hugo Zeni Neto, Wanderley Dantas dos Santos, Claudete Aparecida Mangolin
{"title":"Natural lignin modulators improve bagasse saccharification of sugarcane and energy cane in field trials","authors":"Viviane Fátima de Oliveira, Lucas Figueiredo, Gabriel de Oliveira Correia, Maria de Fátima Pires da Silva Machado, Hugo Zeni Neto, Wanderley Dantas dos Santos, Claudete Aparecida Mangolin","doi":"10.1111/gcbb.13108","DOIUrl":null,"url":null,"abstract":"<p>The burgeoning cellulosic ethanol industry necessitates advancements in enzymatic saccharification, effective pretreatments for lignin removal, and the cultivation of crops more amenable to saccharification. Studies have demonstrated that natural inhibitors of lignin biosynthesis can enhance the saccharification of lignocellulose, even in tissues generated several months post-treatment. In this study, we applied daidzin (a competitive inhibitor of coniferaldehyde dehydrogenase), piperonylic acid (a <i>quasi</i>-irreversible inhibitor of cinnamate 4-hydroxylase), and methylenedioxy cinnamic acid (a competitive inhibitor of 4-coenzyme A ligase) to 60-day-old crops of two conventional Brazilian sugarcane cultivars and two energy cane clones, bred specifically for enhanced biomass production. The resultant biomasses were evaluated for lignin content and enzymatic saccharification efficiency without additional lignin-removal pretreatments. The treatments amplified the production of fermentable sugars in both the sugarcane cultivars and energy cane clones. The most successful results softened the most recalcitrant lignocellulose to the level of the least recalcitrant of the biomasses tested. Interestingly, the softest material became even more susceptible to saccharification.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"15 12","pages":"1465-1476"},"PeriodicalIF":5.9000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13108","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13108","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
The burgeoning cellulosic ethanol industry necessitates advancements in enzymatic saccharification, effective pretreatments for lignin removal, and the cultivation of crops more amenable to saccharification. Studies have demonstrated that natural inhibitors of lignin biosynthesis can enhance the saccharification of lignocellulose, even in tissues generated several months post-treatment. In this study, we applied daidzin (a competitive inhibitor of coniferaldehyde dehydrogenase), piperonylic acid (a quasi-irreversible inhibitor of cinnamate 4-hydroxylase), and methylenedioxy cinnamic acid (a competitive inhibitor of 4-coenzyme A ligase) to 60-day-old crops of two conventional Brazilian sugarcane cultivars and two energy cane clones, bred specifically for enhanced biomass production. The resultant biomasses were evaluated for lignin content and enzymatic saccharification efficiency without additional lignin-removal pretreatments. The treatments amplified the production of fermentable sugars in both the sugarcane cultivars and energy cane clones. The most successful results softened the most recalcitrant lignocellulose to the level of the least recalcitrant of the biomasses tested. Interestingly, the softest material became even more susceptible to saccharification.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.