Lattice-Matched Interfacial Modulation Based on Olivine Enamel-Like Front-Face Fabrication for High-Voltage LiCoO2

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yawen Yan, Shiyuan Zhou, Yichun Zheng, Haitang Zhang, Jianken Chen, Guifan Zeng, Baodan Zhang, Yonglin Tang, Qizheng Zheng, Changhao Wang, Chuan-Wei Wang, Hong-Gang Liao, Ingo Manke, Xiaoxiao Kuai, Kang Dong, Yang Sun, Yu Qiao, Shi-Gang Sun
{"title":"Lattice-Matched Interfacial Modulation Based on Olivine Enamel-Like Front-Face Fabrication for High-Voltage LiCoO2","authors":"Yawen Yan,&nbsp;Shiyuan Zhou,&nbsp;Yichun Zheng,&nbsp;Haitang Zhang,&nbsp;Jianken Chen,&nbsp;Guifan Zeng,&nbsp;Baodan Zhang,&nbsp;Yonglin Tang,&nbsp;Qizheng Zheng,&nbsp;Changhao Wang,&nbsp;Chuan-Wei Wang,&nbsp;Hong-Gang Liao,&nbsp;Ingo Manke,&nbsp;Xiaoxiao Kuai,&nbsp;Kang Dong,&nbsp;Yang Sun,&nbsp;Yu Qiao,&nbsp;Shi-Gang Sun","doi":"10.1002/adfm.202310799","DOIUrl":null,"url":null,"abstract":"<p>The high-voltage induced undesirable surface passivation bilayer (cathode/electrolyte interface and cation-densified surface phase) of LiCoO<sub>2</sub> inevitably leads to battery degradation. Herein, a continual/uniform enamel-like olivine layer on LiCoO<sub>2</sub> surface is fabricated by employing a high-speed mechanical fusion method . The enamel-like layer suppresses interfacial side reactions by tuning EC dehydrogenation, contributing to an ultrathin and stable cathode/electrolyte interface. The strong bonding affinity between LiCoO<sub>2</sub> and enamel-like layer restrains both lattice oxygen loss and associated layered-to-spinel structural distortion. Moreover, the thermal stability of highly delithiated LiCoO<sub>2</sub> is improved, as both the onset temperatures of layered-to-spinel transition and O<sub>2</sub> evolution are simultaneously postponed. Stable operation of LiCoO<sub>2</sub> at 4.6 V high-voltage and 55 °C elevated temperature (both &gt;85% capacity retention after 200 cycles) is achieved. This facile and scalable high-speed solid-phase coating strategy establishes a technical paradigm to enhance surface/interface stability of high-energy-density cathode candidates by constructing an ideal enamel-like surface layer.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 8","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202310799","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The high-voltage induced undesirable surface passivation bilayer (cathode/electrolyte interface and cation-densified surface phase) of LiCoO2 inevitably leads to battery degradation. Herein, a continual/uniform enamel-like olivine layer on LiCoO2 surface is fabricated by employing a high-speed mechanical fusion method . The enamel-like layer suppresses interfacial side reactions by tuning EC dehydrogenation, contributing to an ultrathin and stable cathode/electrolyte interface. The strong bonding affinity between LiCoO2 and enamel-like layer restrains both lattice oxygen loss and associated layered-to-spinel structural distortion. Moreover, the thermal stability of highly delithiated LiCoO2 is improved, as both the onset temperatures of layered-to-spinel transition and O2 evolution are simultaneously postponed. Stable operation of LiCoO2 at 4.6 V high-voltage and 55 °C elevated temperature (both >85% capacity retention after 200 cycles) is achieved. This facile and scalable high-speed solid-phase coating strategy establishes a technical paradigm to enhance surface/interface stability of high-energy-density cathode candidates by constructing an ideal enamel-like surface layer.

Abstract Image

Abstract Image

Abstract Image

基于橄榄石搪瓷前表面制备的高电压LiCoO2晶格匹配界面调制
高压诱导的LiCoO2不良表面钝化双分子层(阴极/电解质界面和阳离子致密表面相)不可避免地导致电池退化。本文采用高速机械熔合的方法在LiCoO2表面制备了连续/均匀的类搪瓷橄榄石层。类搪瓷层通过调节EC脱氢抑制界面副反应,有助于超薄和稳定的阴极/电解质界面。LiCoO2与类珐琅层之间的强键合亲和力抑制了晶格氧损失和相应的层尖晶石结构畸变。此外,由于层向尖晶石转变的起始温度和O2的演化同时被推迟,高度稀薄的LiCoO2的热稳定性得到了改善。LiCoO2在4.6 V高压和55°C高温下稳定工作(200次循环后容量保持率均为85%)。这种简单且可扩展的高速固相涂层策略建立了一种技术范式,通过构建理想的类搪瓷表面层来提高高能量密度阴极候选材料的表面/界面稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信