Does SW China have Carlin-type gold deposits? A micro- to atomic-scale perspective

IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Zhuojun Xie, Phillip Gopon, Yong Xia, James O. Douglas, Jean Cline, Jianzhong Liu, Qinping Tan, Jingdan Xiao, Yuanyun Wen, Youwei Chen, Pan Li, Michael P. Moody
{"title":"Does SW China have Carlin-type gold deposits? A micro- to atomic-scale perspective","authors":"Zhuojun Xie, Phillip Gopon, Yong Xia, James O. Douglas, Jean Cline, Jianzhong Liu, Qinping Tan, Jingdan Xiao, Yuanyun Wen, Youwei Chen, Pan Li, Michael P. Moody","doi":"10.1007/s00126-023-01231-6","DOIUrl":null,"url":null,"abstract":"<p>Actively mined Carlin-type gold provinces are only found in Nevada, USA, and SW China. Herein, we combined nanoscale secondary ion mass spectrometry and atom probe tomography to characterize the distribution of Au and As in pyrite from the micrometer to atomic scales from the Shuiyindong and Lannigou deposits, SW China, and compared this with a representative Nevadan deposit. Results show that invisible gold in both deposits occurs in complex micrometer and nanometer scale zones in the rims of pyrite. Within these oscillatory zones, Au is homogenously distributed rather than occurring as nanoclusters. This confirms that invisible gold is principally structure-bound Au, and that ore fluids were not saturated in Au. Gold deposition from undersaturated, arsenic containing, and ore fluids led to the formation of the giant Carlin-type gold deposits. Although not all high-As zones in the Lannigou pyrite contain high Au, all high-Au zones in both deposits contain elevated As. Arsenic is an important criterion for the incorporation of Au, but just because the fluid had high As does not necessarily imply it had/precipitated a high-Au pyrite. Gold atoms, in the Au–As rich zones of pyrite from both deposits, are surrounded by elevated concentrations of As compared to the matrix. Therefore, As both promotes Au incorporation into the pyrite and controls the maximum amount of structure-bound Au in the pyrite. Comparison of the Guizhou pyrite with Nevada pyrite reflects that the pyrite from the two districts exhibits the consistent nanometer- to atomic-scale characteristics. These similar nanometer- to atomic-scale characteristics further support the Guizhou deposits being classed as “Carlin-type.”</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-023-01231-6","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Actively mined Carlin-type gold provinces are only found in Nevada, USA, and SW China. Herein, we combined nanoscale secondary ion mass spectrometry and atom probe tomography to characterize the distribution of Au and As in pyrite from the micrometer to atomic scales from the Shuiyindong and Lannigou deposits, SW China, and compared this with a representative Nevadan deposit. Results show that invisible gold in both deposits occurs in complex micrometer and nanometer scale zones in the rims of pyrite. Within these oscillatory zones, Au is homogenously distributed rather than occurring as nanoclusters. This confirms that invisible gold is principally structure-bound Au, and that ore fluids were not saturated in Au. Gold deposition from undersaturated, arsenic containing, and ore fluids led to the formation of the giant Carlin-type gold deposits. Although not all high-As zones in the Lannigou pyrite contain high Au, all high-Au zones in both deposits contain elevated As. Arsenic is an important criterion for the incorporation of Au, but just because the fluid had high As does not necessarily imply it had/precipitated a high-Au pyrite. Gold atoms, in the Au–As rich zones of pyrite from both deposits, are surrounded by elevated concentrations of As compared to the matrix. Therefore, As both promotes Au incorporation into the pyrite and controls the maximum amount of structure-bound Au in the pyrite. Comparison of the Guizhou pyrite with Nevada pyrite reflects that the pyrite from the two districts exhibits the consistent nanometer- to atomic-scale characteristics. These similar nanometer- to atomic-scale characteristics further support the Guizhou deposits being classed as “Carlin-type.”

Abstract Image

中国西南部是否有卡林型金矿?微观到原子尺度的视角
活跃开采的卡林型金矿只在美国内华达州和中国西南部被发现。本文结合纳米二级离子质谱法和原子探针层析成像技术,从微米到原子尺度对中国西南水银洞和兰尼古矿床的黄铁矿中Au和As的分布进行了表征,并与美国内华达州的代表性矿床进行了比较。结果表明,两种矿床的不可见金均赋存于黄铁矿边缘的微米级和纳米级复杂带中。在这些振荡区内,金是均匀分布的,而不是以纳米团簇的形式出现。这证实了看不见的金主要是结构结合的金,而且矿石流体中的金并不饱和。欠饱和、含砷和矿石流体中的金沉积导致了巨型卡林型金矿床的形成。虽然并非兰尼古黄铁矿的所有高砷带都含有高金,但两个矿床的所有高金带都含有高砷。砷是判断金是否掺入的一个重要标准,但仅仅因为流体中含有高砷并不一定意味着它析出了高金的黄铁矿。在两个矿床的黄铁矿中富含Au-As的区域,金原子周围的As浓度高于基体。因此,As既促进了Au与黄铁矿的结合,又控制了黄铁矿中结构结合金的最大量。贵州黄铁矿与内华达黄铁矿的对比表明,贵州黄铁矿与内华达黄铁矿具有一致的纳米-原子尺度特征。这些相似的纳米-原子尺度特征进一步支持贵州矿床的“卡林型”分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mineralium Deposita
Mineralium Deposita 地学-地球化学与地球物理
CiteScore
11.00
自引率
6.20%
发文量
61
审稿时长
6 months
期刊介绍: The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信