{"title":"Hydrogen Peroxide Vapor Decontamination of Hazard Group 3 Bacteria and Viruses in a Biosafety Level 3 Laboratory.","authors":"Charlotte Falaise, Cécile Bouvattier, Guilhem Larigauderie, Valérie Lafontaine, Laurent Berchebru, Audrey Marangon, Valérie Vaude-Lauthier, Françoise Raynaud, Laurent Taysse","doi":"10.1089/apb.2021.0022","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>This study aimed to validate the efficacy of hydrogen peroxide vapor (HPV) decontamination technology set up in a biosafety level 3 (BSL-3) laboratory on surrogates and hazard group 3 (HG3) agents.</p><p><strong>Methods and results: </strong>The HPV decontamination system (Bioquell) was assessed with both qualitative and quantitative methods on (1) spore surrogates (<i>Geobacillus stearothermophilus</i>, <i>Bacillus atrophaeus</i>, and <i>Bacillus thuringiensis</i>) in the BSL-3 laboratory and in the material airlock and on (2) HG3 agents (<i>Bacillus anthracis;</i> SARS-CoV-2, Venezuelan equine encephalitis virus [VEE], and Vaccinia virus) in the BSL-3 laboratory. Other HG3 bacteria likely to be handled in the BSL-3 laboratory (<i>Yersinia pestis</i>, <i>Burkholderia mallei</i>, <i>Brucella melitensis</i>, and <i>Francisella tularensis</i>) were excluded from the HPV decontamination assays as preliminary viability tests demonstrated the total inactivation of these agents after 48 h drying on different materials.</p><p><strong>Conclusions: </strong>The efficacy of HPV decontamination was validated with a reduction in viability of 5-7 log<sub>10</sub> for the spores (surrogates and <i>B. anthracis</i>), and for the enveloped RNA viruses. Vaccinia showed a higher resistance to the decontamination process, being dependent on the biological indicator location in the BSL-3 laboratory.</p>","PeriodicalId":7962,"journal":{"name":"Applied Biosafety","volume":"27 1","pages":"15-22"},"PeriodicalIF":0.5000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9402245/pdf/apb.2021.0022.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biosafety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/apb.2021.0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: This study aimed to validate the efficacy of hydrogen peroxide vapor (HPV) decontamination technology set up in a biosafety level 3 (BSL-3) laboratory on surrogates and hazard group 3 (HG3) agents.
Methods and results: The HPV decontamination system (Bioquell) was assessed with both qualitative and quantitative methods on (1) spore surrogates (Geobacillus stearothermophilus, Bacillus atrophaeus, and Bacillus thuringiensis) in the BSL-3 laboratory and in the material airlock and on (2) HG3 agents (Bacillus anthracis; SARS-CoV-2, Venezuelan equine encephalitis virus [VEE], and Vaccinia virus) in the BSL-3 laboratory. Other HG3 bacteria likely to be handled in the BSL-3 laboratory (Yersinia pestis, Burkholderia mallei, Brucella melitensis, and Francisella tularensis) were excluded from the HPV decontamination assays as preliminary viability tests demonstrated the total inactivation of these agents after 48 h drying on different materials.
Conclusions: The efficacy of HPV decontamination was validated with a reduction in viability of 5-7 log10 for the spores (surrogates and B. anthracis), and for the enveloped RNA viruses. Vaccinia showed a higher resistance to the decontamination process, being dependent on the biological indicator location in the BSL-3 laboratory.
Applied BiosafetyEnvironmental Science-Management, Monitoring, Policy and Law
CiteScore
2.50
自引率
13.30%
发文量
27
期刊介绍:
Applied Biosafety (APB), sponsored by ABSA International, is a peer-reviewed, scientific journal committed to promoting global biosafety awareness and best practices to prevent occupational exposures and adverse environmental impacts related to biohazardous releases. APB provides a forum for exchanging sound biosafety and biosecurity initiatives by publishing original articles, review articles, letters to the editors, commentaries, and brief reviews. APB informs scientists, safety professionals, policymakers, engineers, architects, and governmental organizations. The journal is committed to publishing on topics significant in well-resourced countries as well as information relevant to underserved regions, engaging and cultivating the development of biosafety professionals globally.