Petros Barmpas, Sotiris Tasoulis, Aristidis G Vrahatis, Spiros V Georgakopoulos, Panagiotis Anagnostou, Matthew Prina, José Luis Ayuso-Mateos, Jerome Bickenbach, Ivet Bayes, Martin Bobak, Francisco Félix Caballero, Somnath Chatterji, Laia Egea-Cortés, Esther García-Esquinas, Matilde Leonardi, Seppo Koskinen, Ilona Koupil, Andrzej Paja K, Martin Prince, Warren Sanderson, Sergei Scherbov, Abdonas Tamosiunas, Aleksander Galas, Josep Maria Haro, Albert Sanchez-Niubo, Vassilis P Plagianakos, Demosthenes Panagiotakos
{"title":"A divisive hierarchical clustering methodology for enhancing the ensemble prediction power in large scale population studies: the ATHLOS project.","authors":"Petros Barmpas, Sotiris Tasoulis, Aristidis G Vrahatis, Spiros V Georgakopoulos, Panagiotis Anagnostou, Matthew Prina, José Luis Ayuso-Mateos, Jerome Bickenbach, Ivet Bayes, Martin Bobak, Francisco Félix Caballero, Somnath Chatterji, Laia Egea-Cortés, Esther García-Esquinas, Matilde Leonardi, Seppo Koskinen, Ilona Koupil, Andrzej Paja K, Martin Prince, Warren Sanderson, Sergei Scherbov, Abdonas Tamosiunas, Aleksander Galas, Josep Maria Haro, Albert Sanchez-Niubo, Vassilis P Plagianakos, Demosthenes Panagiotakos","doi":"10.1007/s13755-022-00171-1","DOIUrl":null,"url":null,"abstract":"<p><p>The ATHLOS cohort is composed of several harmonized datasets of international groups related to health and aging. As a result, the Healthy Aging index has been constructed based on a selection of variables from 16 individual studies. In this paper, we consider additional variables found in ATHLOS and investigate their utilization for predicting the Healthy Aging index. For this purpose, motivated by the volume and diversity of the dataset, we focus our attention upon data clustering, where unsupervised learning is utilized to enhance prediction power. Thus we show the predictive utility of exploiting hidden data structures. In addition, we demonstrate that imposed computation bottlenecks can be surpassed when using appropriate hierarchical clustering, within a clustering for ensemble classification scheme, while retaining prediction benefits. We propose a complete methodology that is evaluated against baseline methods and the original concept. The results are very encouraging suggesting further developments in this direction along with applications in tasks with similar characteristics. A straightforward open source implementation for the R project is also provided (https://github.com/Petros-Barmpas/HCEP).</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13755-022-00171-1.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"10 1","pages":"6"},"PeriodicalIF":4.7000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9013733/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-022-00171-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The ATHLOS cohort is composed of several harmonized datasets of international groups related to health and aging. As a result, the Healthy Aging index has been constructed based on a selection of variables from 16 individual studies. In this paper, we consider additional variables found in ATHLOS and investigate their utilization for predicting the Healthy Aging index. For this purpose, motivated by the volume and diversity of the dataset, we focus our attention upon data clustering, where unsupervised learning is utilized to enhance prediction power. Thus we show the predictive utility of exploiting hidden data structures. In addition, we demonstrate that imposed computation bottlenecks can be surpassed when using appropriate hierarchical clustering, within a clustering for ensemble classification scheme, while retaining prediction benefits. We propose a complete methodology that is evaluated against baseline methods and the original concept. The results are very encouraging suggesting further developments in this direction along with applications in tasks with similar characteristics. A straightforward open source implementation for the R project is also provided (https://github.com/Petros-Barmpas/HCEP).
Supplementary information: The online version contains supplementary material available at 10.1007/s13755-022-00171-1.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.