{"title":"The genome loading model for the origin and maintenance of sex in eukaryotes.","authors":"András Tóth, Lóránt Székvölgyi, Tibor Vellai","doi":"10.1007/s42977-022-00148-x","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding why sexual reproduction-which involves syngamy (union of gametes) and meiosis-emerged and how it has subsisted for millions of years remains a fundamental problem in biology. Considered as the essence of sex, meiotic recombination is initiated by a DNA double-strand break (DSB) that forms on one of the pairing homologous chromosomes. This DNA lesion is subsequently repaired by gene conversion, the non-reciprocal transfer of genetic information from the intact homolog. A major issue is which of the pairing homologs undergoes DSB formation. Accumulating evidence shows that chromosomal sites where the pairing homologs locally differ in size, i.e., are heterozygous for an insertion or deletion, often display disparity in gene conversion. Biased conversion tends to duplicate insertions and lose deletions. This suggests that DSB is preferentially formed on the \"shorter\" homologous region, which thereby acts as the recipient for DNA transfer. Thus, sex primarily functions as a genome (re)loading mechanism. It ensures the restoration of formerly lost DNA sequences (deletions) and allows the efficient copying and, mainly in eukaryotes, subsequent spreading of newly emerged sequences (insertions) arising initially in an individual genome, even if they confer no advantage to the host. In this way, sex simultaneously repairs deletions and increases genetic variability underlying adaptation. The model explains a remarkable increase in DNA content during the evolution of eukaryotic genomes.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia futura","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42977-022-00148-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding why sexual reproduction-which involves syngamy (union of gametes) and meiosis-emerged and how it has subsisted for millions of years remains a fundamental problem in biology. Considered as the essence of sex, meiotic recombination is initiated by a DNA double-strand break (DSB) that forms on one of the pairing homologous chromosomes. This DNA lesion is subsequently repaired by gene conversion, the non-reciprocal transfer of genetic information from the intact homolog. A major issue is which of the pairing homologs undergoes DSB formation. Accumulating evidence shows that chromosomal sites where the pairing homologs locally differ in size, i.e., are heterozygous for an insertion or deletion, often display disparity in gene conversion. Biased conversion tends to duplicate insertions and lose deletions. This suggests that DSB is preferentially formed on the "shorter" homologous region, which thereby acts as the recipient for DNA transfer. Thus, sex primarily functions as a genome (re)loading mechanism. It ensures the restoration of formerly lost DNA sequences (deletions) and allows the efficient copying and, mainly in eukaryotes, subsequent spreading of newly emerged sequences (insertions) arising initially in an individual genome, even if they confer no advantage to the host. In this way, sex simultaneously repairs deletions and increases genetic variability underlying adaptation. The model explains a remarkable increase in DNA content during the evolution of eukaryotic genomes.
Biologia futuraAgricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.50
自引率
0.00%
发文量
27
期刊介绍:
How can the scientific knowledge we possess now influence that future? That is, the FUTURE of Earth and life − of humankind. Can we make choices in the present to change our future? How can 21st century biological research ask proper scientific questions and find solid answers? Addressing these questions is the main goal of Biologia Futura (formerly Acta Biologica Hungarica).
In keeping with the name, the new mission is to focus on areas of biology where major advances are to be expected, areas of biology with strong inter-disciplinary connection and to provide new avenues for future research in biology. Biologia Futura aims to publish articles from all fields of biology.