DeLIVR: a deep learning approach to IV regression for testing nonlinear causal effects in transcriptome-wide association studies.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ruoyu He, Mingyang Liu, Zhaotong Lin, Zhong Zhuang, Xiaotong Shen, Wei Pan
{"title":"DeLIVR: a deep learning approach to IV regression for testing nonlinear causal effects in transcriptome-wide association studies.","authors":"Ruoyu He, Mingyang Liu, Zhaotong Lin, Zhong Zhuang, Xiaotong Shen, Wei Pan","doi":"10.1093/biostatistics/kxac051","DOIUrl":null,"url":null,"abstract":"<p><p>Transcriptome-wide association studies (TWAS) have been increasingly applied to identify (putative) causal genes for complex traits and diseases. TWAS can be regarded as a two-sample two-stage least squares method for instrumental variable (IV) regression for causal inference. The standard TWAS (called TWAS-L) only considers a linear relationship between a gene's expression and a trait in stage 2, which may lose statistical power when not true. Recently, an extension of TWAS (called TWAS-LQ) considers both the linear and quadratic effects of a gene on a trait, which however is not flexible enough due to its parametric nature and may be low powered for nonquadratic nonlinear effects. On the other hand, a deep learning (DL) approach, called DeepIV, has been proposed to nonparametrically model a nonlinear effect in IV regression. However, it is both slow and unstable due to the ill-posed inverse problem of solving an integral equation with Monte Carlo approximations. Furthermore, in the original DeepIV approach, statistical inference, that is, hypothesis testing, was not studied. Here, we propose a novel DL approach, called DeLIVR, to overcome the major drawbacks of DeepIV, by estimating a related but different target function and including a hypothesis testing framework. We show through simulations that DeLIVR was both faster and more stable than DeepIV. We applied both parametric and DL approaches to the GTEx and UK Biobank data, showcasing that DeLIVR detected additional 8 and 7 genes nonlinearly associated with high-density lipoprotein (HDL) cholesterol and low-density lipoprotein (LDL) cholesterol, respectively, all of which would be missed by TWAS-L, TWAS-LQ, and DeepIV; these genes include BUD13 associated with HDL, SLC44A2 and GMIP with LDL, all supported by previous studies.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017120/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxac051","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transcriptome-wide association studies (TWAS) have been increasingly applied to identify (putative) causal genes for complex traits and diseases. TWAS can be regarded as a two-sample two-stage least squares method for instrumental variable (IV) regression for causal inference. The standard TWAS (called TWAS-L) only considers a linear relationship between a gene's expression and a trait in stage 2, which may lose statistical power when not true. Recently, an extension of TWAS (called TWAS-LQ) considers both the linear and quadratic effects of a gene on a trait, which however is not flexible enough due to its parametric nature and may be low powered for nonquadratic nonlinear effects. On the other hand, a deep learning (DL) approach, called DeepIV, has been proposed to nonparametrically model a nonlinear effect in IV regression. However, it is both slow and unstable due to the ill-posed inverse problem of solving an integral equation with Monte Carlo approximations. Furthermore, in the original DeepIV approach, statistical inference, that is, hypothesis testing, was not studied. Here, we propose a novel DL approach, called DeLIVR, to overcome the major drawbacks of DeepIV, by estimating a related but different target function and including a hypothesis testing framework. We show through simulations that DeLIVR was both faster and more stable than DeepIV. We applied both parametric and DL approaches to the GTEx and UK Biobank data, showcasing that DeLIVR detected additional 8 and 7 genes nonlinearly associated with high-density lipoprotein (HDL) cholesterol and low-density lipoprotein (LDL) cholesterol, respectively, all of which would be missed by TWAS-L, TWAS-LQ, and DeepIV; these genes include BUD13 associated with HDL, SLC44A2 and GMIP with LDL, all supported by previous studies.

DeLIVR:在全转录组关联研究中测试非线性因果效应的深度学习 IV 回归方法。
全转录组关联研究(TWAS)越来越多地被用于识别复杂性状和疾病的(推定)因果基因。TWAS 可被视为用于因果推断的工具变量(IV)回归的两抽样两阶段最小二乘法。标准的 TWAS(称为 TWAS-L)在第二阶段只考虑基因表达与性状之间的线性关系,当这种关系不真实时,可能会失去统计能力。最近,TWAS 的一种扩展(称为 TWAS-LQ)同时考虑了基因对性状的线性和二次方效应,但由于其参数化的性质,这种方法不够灵活,而且对于非二次方的非线性效应的统计能力可能较低。另一方面,有人提出了一种名为 DeepIV 的深度学习(DL)方法,用于对 IV 回归中的非线性效应进行非参数建模。然而,由于需要用蒙特卡罗近似法求解积分方程的逆问题,该方法既慢又不稳定。此外,在最初的 DeepIV 方法中,没有研究统计推断,即假设检验。在这里,我们提出了一种名为 DeLIVR 的新型 DL 方法,通过估计一个相关但不同的目标函数并包含一个假设检验框架,克服了 DeepIV 的主要缺点。我们通过仿真表明,DeLIVR 比 DeepIV 更快、更稳定。我们在 GTEx 和英国生物库数据中应用了参数法和 DL 法,结果表明 DeLIVR 分别检测出了额外的 8 个和 7 个与高密度脂蛋白胆固醇和低密度脂蛋白胆固醇非线性相关的基因,而 TWAS-L、TWAS-LQ 和 DeepIV 会漏掉所有这些基因;这些基因包括与高密度脂蛋白相关的 BUD13、与低密度脂蛋白相关的 SLC44A2 和 GMIP,所有这些都得到了以前研究的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信