Peiyu Wu, Feng Jiao, He Huang, Donghua Liu, Wang Tang, Jie Liang, Wen Chen
{"title":"<i>Morinda officinalis</i> polysaccharide enable suppression of osteoclastic differentiation by exosomes derived from rat mesenchymal stem cells.","authors":"Peiyu Wu, Feng Jiao, He Huang, Donghua Liu, Wang Tang, Jie Liang, Wen Chen","doi":"10.1080/13880209.2022.2093385","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong><i>Morinda officinalis</i> F.C. How. (MO) (Rubiaceae) can strengthen bone function.</p><p><strong>Objective: </strong>To examine the functional mechanism and effect of MO polysaccharides (MOPs) in rats with glucocorticoid-induced osteoporosis (GIOP).</p><p><strong>Materials and methods: </strong>Rats with GIOP were treated with 5, 15 or 45 mL/kg of MOP [<i>n</i> = 15 for each dose, intraperitoneal (i.p.) injection every other day for 8 weeks]. The body weight of rats and histomorphology of bone tissues were examined. Bone marrow mesenchymal stem cells (BMSCs)-derived exosomes (Exo) were collected and identified. Bone marrow-derived macrophages (BMMs) were induced to differentiate into osteoclasts and treated with BMSC-Exo for <i>in vitro</i> studies.</p><p><strong>Results: </strong>MOP reduced the body weight (5, 15, or 45 mg/kg MOP vs. phosphate-buffered saline: 8%, 15% and 25%, <i>p</i> < 0.01), elevated the bone volume to tissue volume (BV/TV), mean trabecular thickness (Tb.Th), mean trabecular number (Tb.N) and mean connectivity density (Conn.D) (40-86%, <i>p</i> < 0.01), decreased the mean trabecular separation/spacing (Tb.Sp) (22-37%, <i>p</i> < 0.01), increased the cortical bone continuity (35-90%, <i>p</i> < 0.01) and elevated RUNX family transcription factor 2 and RANK levels (5-12%, <i>p</i> < 0.01), but suppressed matrix metallopeptidase 9 and cathepsin K levels (9-20%, <i>p</i> < 0.01) in femur tissues. BMSC-Exo from MOP-treated rats (MOP-Exo) suppressed osteoclastic differentiation and proliferation of BMMs. The downregulation of microRNA-101-3p (miR-101-3p) or the upregulation of prostaglandin-endoperoxide synthase 2 (PTGS2) blocked the functions of MOP-Exo.</p><p><strong>Discussion and conclusions: </strong>MOP inhibits osteoclastic differentiation and could potentially be used for osteoporosis management. This suppression may be enhanced by the upregulation of miR-101-3p or the inhibition of PTGS2.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"60 1","pages":"1303-1316"},"PeriodicalIF":3.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e4/18/IPHB_60_2093385.PMC9272931.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13880209.2022.2093385","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
Context: Morinda officinalis F.C. How. (MO) (Rubiaceae) can strengthen bone function.
Objective: To examine the functional mechanism and effect of MO polysaccharides (MOPs) in rats with glucocorticoid-induced osteoporosis (GIOP).
Materials and methods: Rats with GIOP were treated with 5, 15 or 45 mL/kg of MOP [n = 15 for each dose, intraperitoneal (i.p.) injection every other day for 8 weeks]. The body weight of rats and histomorphology of bone tissues were examined. Bone marrow mesenchymal stem cells (BMSCs)-derived exosomes (Exo) were collected and identified. Bone marrow-derived macrophages (BMMs) were induced to differentiate into osteoclasts and treated with BMSC-Exo for in vitro studies.
Results: MOP reduced the body weight (5, 15, or 45 mg/kg MOP vs. phosphate-buffered saline: 8%, 15% and 25%, p < 0.01), elevated the bone volume to tissue volume (BV/TV), mean trabecular thickness (Tb.Th), mean trabecular number (Tb.N) and mean connectivity density (Conn.D) (40-86%, p < 0.01), decreased the mean trabecular separation/spacing (Tb.Sp) (22-37%, p < 0.01), increased the cortical bone continuity (35-90%, p < 0.01) and elevated RUNX family transcription factor 2 and RANK levels (5-12%, p < 0.01), but suppressed matrix metallopeptidase 9 and cathepsin K levels (9-20%, p < 0.01) in femur tissues. BMSC-Exo from MOP-treated rats (MOP-Exo) suppressed osteoclastic differentiation and proliferation of BMMs. The downregulation of microRNA-101-3p (miR-101-3p) or the upregulation of prostaglandin-endoperoxide synthase 2 (PTGS2) blocked the functions of MOP-Exo.
Discussion and conclusions: MOP inhibits osteoclastic differentiation and could potentially be used for osteoporosis management. This suppression may be enhanced by the upregulation of miR-101-3p or the inhibition of PTGS2.
背景:Morinda officinalis F.C. How。(MO)(茜草科)可以增强骨骼功能。目的:探讨多酚多糖(moops)对糖皮质激素性骨质疏松(GIOP)大鼠的作用机制和作用机制。材料和方法:GIOP大鼠分别给予5、15或45 mL/kg的MOP [n = 15 /kg,每剂量,每隔一天腹腔注射一次,持续8周]。观察大鼠体重和骨组织形态学变化。收集并鉴定骨髓间充质干细胞(BMSCs)来源的外泌体(Exo)。采用体外实验方法,诱导骨髓源性巨噬细胞(BMMs)向破骨细胞分化,并用BMSC-Exo处理。结果:MOP降低体重(5、15或45 mg/kg MOP与磷酸盐缓冲盐水:8%、15%和25%,p p p p p p p p)。讨论和结论:MOP抑制破骨细胞分化,可能用于骨质疏松症的治疗。这种抑制可能通过miR-101-3p的上调或PTGS2的抑制而增强。
期刊介绍:
Pharmaceutical Biology will publish manuscripts describing the discovery, methods for discovery, description, analysis characterization, and production/isolation (including sources and surveys) of biologically-active chemicals or other substances, drugs, pharmaceutical products, or preparations utilized in systems of traditional medicine.
Topics may generally encompass any facet of natural product research related to pharmaceutical biology. Papers dealing with agents or topics related to natural product drugs are also appropriate (e.g., semi-synthetic derivatives). Manuscripts will be published as reviews, perspectives, regular research articles, and short communications. The primary criteria for acceptance and publication are scientific rigor and potential to advance the field.