Yu-Wen Wang , Chia-I Lin , Hung-Wen Chen , Jui-Ching Wu , Ya-Hui Chuang
{"title":"Apoptotic biliary epithelial cells and gut dysbiosis in the induction of murine primary biliary cholangitis","authors":"Yu-Wen Wang , Chia-I Lin , Hung-Wen Chen , Jui-Ching Wu , Ya-Hui Chuang","doi":"10.1016/j.jtauto.2022.100182","DOIUrl":null,"url":null,"abstract":"<div><p>Primary biliary cholangitis (PBC) is a female-predominant liver autoimmune disease characterized by the specific immune-mediated destruction of the intrahepatic small bile duct. Although apoptosis of biliary epithelial cells (BECs) and alterations in gut microbiota are observed in patients with PBC, it is still unclear whether these events happen in the early stage and cause the breakdown of tolerance in PBC. In this study, we examined the early events in the loss of tolerance in our well-defined 2-OA-OVA-induced murine autoimmune cholangitis (AIC) model. We report herein that apoptosis of BECs was notable in the early stage of murine AIC. An altered gut microbiota, in particular, an increased percentage of gram-positive <em>Firmicutes</em> in AIC mice was also observed. BECs in AIC mice expressed adhesion molecule ICAM-1, cytokines/chemokines TNF-α, CCL2, CXCL9, CXCL10, and toll-like receptor (TLR) 2. Moreover, BECs treated with TLR2 ligand had elevated apoptosis and CXCL10 production. These data collectively suggest a new mechanism of tolerance breakdown in AIC. Altered gut microbiota induces apoptosis of BECs through TLR2 signaling. BECs secrete chemokines to recruit CD8 T cells to damage BECs further.</p></div>","PeriodicalId":36425,"journal":{"name":"Journal of Translational Autoimmunity","volume":"6 ","pages":"Article 100182"},"PeriodicalIF":4.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c8/d0/main.PMC9811212.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Translational Autoimmunity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589909022000430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Primary biliary cholangitis (PBC) is a female-predominant liver autoimmune disease characterized by the specific immune-mediated destruction of the intrahepatic small bile duct. Although apoptosis of biliary epithelial cells (BECs) and alterations in gut microbiota are observed in patients with PBC, it is still unclear whether these events happen in the early stage and cause the breakdown of tolerance in PBC. In this study, we examined the early events in the loss of tolerance in our well-defined 2-OA-OVA-induced murine autoimmune cholangitis (AIC) model. We report herein that apoptosis of BECs was notable in the early stage of murine AIC. An altered gut microbiota, in particular, an increased percentage of gram-positive Firmicutes in AIC mice was also observed. BECs in AIC mice expressed adhesion molecule ICAM-1, cytokines/chemokines TNF-α, CCL2, CXCL9, CXCL10, and toll-like receptor (TLR) 2. Moreover, BECs treated with TLR2 ligand had elevated apoptosis and CXCL10 production. These data collectively suggest a new mechanism of tolerance breakdown in AIC. Altered gut microbiota induces apoptosis of BECs through TLR2 signaling. BECs secrete chemokines to recruit CD8 T cells to damage BECs further.