Naive and memory T cells TCR-HLA-binding prediction.

Neta Glazer, Ofek Akerman, Yoram Louzoun
{"title":"Naive and memory T cells TCR-HLA-binding prediction.","authors":"Neta Glazer,&nbsp;Ofek Akerman,&nbsp;Yoram Louzoun","doi":"10.1093/oxfimm/iqac001","DOIUrl":null,"url":null,"abstract":"<p><p>T cells recognize antigens through the interaction of their T cell receptor (TCR) with a peptide-major histocompatibility complex (pMHC) molecule. Following thymic-positive selection, TCRs in peripheral naive T cells are expected to bind MHC alleles of the host. Peripheral clonal selection is expected to further increase the frequency of antigen-specific TCRs that bind to the host MHC alleles. To check for a systematic preference for MHC-binding T cells in TCR repertoires, we developed Natural Language Processing-based methods to predict TCR<b>-</b>MHC binding independently of the peptide presented for Class I MHC alleles. We trained a classifier on published TCR<b>-</b>pMHC binding pairs and obtained a high area under curve (AUC) of over 0.90 on the test set. However, when applied to TCR repertoires, the accuracy of the classifier dropped. We thus developed a two-stage prediction model, based on large-scale naive and memory TCR repertoires, denoted T<b>C</b>R H<b>LA</b>-b<b>i</b>nding p<b>re</b>dictor (CLAIRE). Since each host carries multiple human leukocyte antigen (HLA) alleles, we first computed whether a TCR on a CD8 T cell binds an MHC from any of the host Class-I HLA alleles. We then performed an iteration, where we predict the binding with the most probable allele from the first round. We show that this classifier is more precise for memory than for naïve cells. Moreover, it can be transferred between datasets. Finally, we developed a CD4-CD8 T cell classifier to apply CLAIRE to unsorted bulk sequencing datasets and showed a high AUC of 0.96 and 0.90 on large datasets. CLAIRE is available through a GitHub at: https://github.com/louzounlab/CLAIRE, and as a server at: https://claire.math.biu.ac.il/Home.</p>","PeriodicalId":74384,"journal":{"name":"Oxford open immunology","volume":"3 1","pages":"iqac001"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914496/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford open immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oxfimm/iqac001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

T cells recognize antigens through the interaction of their T cell receptor (TCR) with a peptide-major histocompatibility complex (pMHC) molecule. Following thymic-positive selection, TCRs in peripheral naive T cells are expected to bind MHC alleles of the host. Peripheral clonal selection is expected to further increase the frequency of antigen-specific TCRs that bind to the host MHC alleles. To check for a systematic preference for MHC-binding T cells in TCR repertoires, we developed Natural Language Processing-based methods to predict TCR-MHC binding independently of the peptide presented for Class I MHC alleles. We trained a classifier on published TCR-pMHC binding pairs and obtained a high area under curve (AUC) of over 0.90 on the test set. However, when applied to TCR repertoires, the accuracy of the classifier dropped. We thus developed a two-stage prediction model, based on large-scale naive and memory TCR repertoires, denoted TCR HLA-binding predictor (CLAIRE). Since each host carries multiple human leukocyte antigen (HLA) alleles, we first computed whether a TCR on a CD8 T cell binds an MHC from any of the host Class-I HLA alleles. We then performed an iteration, where we predict the binding with the most probable allele from the first round. We show that this classifier is more precise for memory than for naïve cells. Moreover, it can be transferred between datasets. Finally, we developed a CD4-CD8 T cell classifier to apply CLAIRE to unsorted bulk sequencing datasets and showed a high AUC of 0.96 and 0.90 on large datasets. CLAIRE is available through a GitHub at: https://github.com/louzounlab/CLAIRE, and as a server at: https://claire.math.biu.ac.il/Home.

Abstract Image

Abstract Image

Abstract Image

幼稚T细胞和记忆T细胞tcr - hla结合预测。
T细胞通过其T细胞受体(TCR)与肽-主要组织相容性复合体(pMHC)分子的相互作用来识别抗原。胸腺阳性选择后,外周初始T细胞中的tcr有望结合宿主的MHC等位基因。外周克隆选择有望进一步增加抗原特异性tcr与宿主MHC等位基因结合的频率。为了检查TCR库中MHC结合T细胞的系统偏好,我们开发了基于自然语言处理的方法来预测TCR-MHC结合,而不依赖于I类MHC等位基因的肽。我们在已发表的TCR-pMHC结合对上训练了一个分类器,在测试集上获得了超过0.90的高曲线下面积(AUC)。然而,当应用于TCR曲目时,分类器的准确性下降了。因此,我们开发了一个基于大规模幼稚和记忆TCR库的两阶段预测模型,称为TCR hla结合预测器(CLAIRE)。由于每个宿主携带多个人类白细胞抗原(HLA)等位基因,我们首先计算了CD8 T细胞上的TCR是否与来自宿主i类HLA等位基因的MHC结合。然后我们进行了一次迭代,在那里我们预测与第一轮中最可能的等位基因的结合。我们证明,这个分类器对记忆比对naïve细胞更精确。此外,它可以在数据集之间传输。最后,我们开发了一个CD4-CD8 T细胞分类器,将CLAIRE应用于未分类的批量测序数据集,并在大型数据集上显示出0.96和0.90的高AUC。CLAIRE可以通过GitHub访问:https://github.com/louzounlab/CLAIRE,作为服务器访问:https://claire.math.biu.ac.il/Home。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信