Musbahu Adam Ahmad, Yu-Yu Aung, Alfa Akustia Widati, Satya Candra Wibawa Sakti, Sri Sumarsih, Irzaman Irzaman, Brian Yuliarto, Jia-Yaw Chang, Mochamad Zakki Fahmi
{"title":"A Perspective on Using Organic Molecules Composing Carbon Dots for Cancer Treatment.","authors":"Musbahu Adam Ahmad, Yu-Yu Aung, Alfa Akustia Widati, Satya Candra Wibawa Sakti, Sri Sumarsih, Irzaman Irzaman, Brian Yuliarto, Jia-Yaw Chang, Mochamad Zakki Fahmi","doi":"10.7150/ntno.80076","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescent Carbon dots (CDs) derived from biologically active sources have shown enhanced activities compared to their precursors. With their prominent potentiality, these small-sized (<10nm) nanomaterials could be easily synthesized from organic sources either by bottom-up or green approach. Their sources could influence the functional groups present on the CDs surfaces. A crude source of organic molecules has been used to develop fluorescent CDs. In addition, pure organic molecules were also valuable in developing practical CDs. Physiologically responsive interaction of CDs with various cellular receptors is possible due to the robust functionalization on their surface. In this review, we studied various literatures from the past ten years that reported the potential application of carbon dots as alternatives in cancer chemotherapy. The selective cytotoxic nature of some of the CDs towards cancer cell lines suggests the role of surface functional groups towards selective interaction, which results in over-expressed proteins characteristic of cancer cell lines. It could be inferred that cheaply sourced CDs could selectively bind to overexpressed proteins in cancer cells with the ultimate effect of cell death induced by apoptosis. In most cases, CDs-induced apoptosis directly or indirectly follows the mitochondrial pathway. Therefore, these nanosized CDs could serve as alternatives to the current kinds of cancer treatments that are expensive and have numerous side effects.</p>","PeriodicalId":36934,"journal":{"name":"Nanotheranostics","volume":"7 2","pages":"187-201"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925355/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotheranostics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7150/ntno.80076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 1
Abstract
Fluorescent Carbon dots (CDs) derived from biologically active sources have shown enhanced activities compared to their precursors. With their prominent potentiality, these small-sized (<10nm) nanomaterials could be easily synthesized from organic sources either by bottom-up or green approach. Their sources could influence the functional groups present on the CDs surfaces. A crude source of organic molecules has been used to develop fluorescent CDs. In addition, pure organic molecules were also valuable in developing practical CDs. Physiologically responsive interaction of CDs with various cellular receptors is possible due to the robust functionalization on their surface. In this review, we studied various literatures from the past ten years that reported the potential application of carbon dots as alternatives in cancer chemotherapy. The selective cytotoxic nature of some of the CDs towards cancer cell lines suggests the role of surface functional groups towards selective interaction, which results in over-expressed proteins characteristic of cancer cell lines. It could be inferred that cheaply sourced CDs could selectively bind to overexpressed proteins in cancer cells with the ultimate effect of cell death induced by apoptosis. In most cases, CDs-induced apoptosis directly or indirectly follows the mitochondrial pathway. Therefore, these nanosized CDs could serve as alternatives to the current kinds of cancer treatments that are expensive and have numerous side effects.