Heywood Cases in Unidimensional Factor Models and Item Response Models for Binary Data.

IF 1 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL
Applied Psychological Measurement Pub Date : 2023-03-01 Epub Date: 2023-01-29 DOI:10.1177/01466216231151701
Selena Wang, Paul De Boeck, Marcel Yotebieng
{"title":"Heywood Cases in Unidimensional Factor Models and Item Response Models for Binary Data.","authors":"Selena Wang, Paul De Boeck, Marcel Yotebieng","doi":"10.1177/01466216231151701","DOIUrl":null,"url":null,"abstract":"<p><p>Heywood cases are known from linear factor analysis literature as variables with communalities larger than 1.00, and in present day factor models, the problem also shows in negative residual variances. For binary data, factor models for ordinal data can be applied with either delta parameterization or theta parametrization. The former is more common than the latter and can yield Heywood cases when limited information estimation is used. The same problem shows up as non convergence cases in theta parameterized factor models and as extremely large discriminations in item response theory (IRT) models. In this study, we explain why the same problem appears in different forms depending on the method of analysis. We first discuss this issue using equations and then illustrate our conclusions using a small simulation study, where all three methods, delta and theta parameterized ordinal factor models (with estimation based on polychoric correlations and thresholds) and an IRT model (with full information estimation), are used to analyze the same datasets. The results generalize across WLS, WLSMV, and ULS estimators for the factor models for ordinal data. Finally, we analyze real data with the same three approaches. The results of the simulation study and the analysis of real data confirm the theoretical conclusions.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979198/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216231151701","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Heywood cases are known from linear factor analysis literature as variables with communalities larger than 1.00, and in present day factor models, the problem also shows in negative residual variances. For binary data, factor models for ordinal data can be applied with either delta parameterization or theta parametrization. The former is more common than the latter and can yield Heywood cases when limited information estimation is used. The same problem shows up as non convergence cases in theta parameterized factor models and as extremely large discriminations in item response theory (IRT) models. In this study, we explain why the same problem appears in different forms depending on the method of analysis. We first discuss this issue using equations and then illustrate our conclusions using a small simulation study, where all three methods, delta and theta parameterized ordinal factor models (with estimation based on polychoric correlations and thresholds) and an IRT model (with full information estimation), are used to analyze the same datasets. The results generalize across WLS, WLSMV, and ULS estimators for the factor models for ordinal data. Finally, we analyze real data with the same three approaches. The results of the simulation study and the analysis of real data confirm the theoretical conclusions.

二元数据的单维因子模型和项目反应模型中的海伍德案例。
在线性因子分析文献中,海伍德案例被认为是公有性大于 1.00 的变量,在当今的因子模型中,该问题也表现为负残差方差。对于二元数据,序数数据的因子模型可以采用 delta 参数化或 Theta 参数化。前者比后者更常见,在使用有限信息估计时,可能会产生海伍德案例。同样的问题还表现在θ参数化因子模型中的不收敛情况,以及项目反应理论(IRT)模型中的超大判别率。在本研究中,我们将解释为什么同一问题会因分析方法的不同而以不同的形式出现。我们首先用方程来讨论这个问题,然后用一个小型模拟研究来说明我们的结论。在这个研究中,我们使用了所有三种方法,即 delta 和 theta 参数化序数因子模型(基于多变量相关性和阈值进行估计)以及 IRT 模型(基于全信息估计)来分析相同的数据集。其结果与 WLS、WLSMV 和 ULS 对序数数据因子模型的估计结果一致。最后,我们用同样的三种方法分析了真实数据。模拟研究和真实数据分析的结果证实了理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信